हिंदी

∫ X 3 Sin − 1 X 2 √ 1 − X 4 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x^3 \sin^{- 1} x^2}{\sqrt{1 - x^4}} \text{ dx }\]
योग

उत्तर

\[\text{ Let I } = \int \frac{x^3 \times \sin^{- 1} x^2}{\sqrt{1 - x^4}}dx\]
\[\text{ Putting } \sin^{- 1} x^2 = t \]
\[ \Rightarrow x^2 = \sin t\]
\[ \Rightarrow \frac{1 \times 2x  \text{ dx }}{\sqrt{1 - \left( x^2 \right)^2}} = dt\]
\[ \Rightarrow \frac{x    \text{ dx }}{\sqrt{1 - x^4}} = \frac{dt}{2}\]
\[ \therefore I = \int x^2 . \frac{\sin^{- 1} x^2}{\sqrt{1 - x^4}} . \text{ x   dx }\]
\[ = \int \left( \sin t \right) . t . \frac{dt}{2}\]
\[ = \frac{1}{2}\int t_I . \sin_{II} t    \text{ dt }\]
\[ = \frac{1}{2}\left[ t\int\text{ sin  t  dt} - \int\left\{ \frac{d}{dt}\left( t \right)\int\text{ sin  t  dt } \right\}dt \right]\]
\[ = \frac{1}{2} \left[ t . \left( - \cos t \right) - \int 1 . \left( - \cos t \right) dt \right]\]
\[ = \frac{1}{2}\left[ - t \cos t + \sin t \right] + C\]
\[ = \frac{1}{2} \left[ - t\sqrt{1 - \sin^2 t} + \sin t \right] + C\]
\[ = \frac{1}{2} \left[ - \sin^{- 1} \left( x^2 \right) \sqrt{1 - x^4} + x^2 \right] + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.25 [पृष्ठ १३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.25 | Q 59 | पृष्ठ १३४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

\[\int \tan^2 \left( 2x - 3 \right) dx\]


` ∫   cos  3x   cos  4x` dx  

\[\int\frac{1}{\sqrt{1 - \cos 2x}} dx\]

\[\int\frac{1}{x (3 + \log x)} dx\]

\[\int \tan^3 \text{2x sec 2x dx}\]

\[\int \cot^5 \text{ x } {cosec}^4 x\text{ dx }\]

Evaluate the following integrals:

\[\int\cos\left\{ 2 \cot^{- 1} \sqrt{\frac{1 + x}{1 - x}} \right\}dx\]

\[\int\frac{dx}{e^x + e^{- x}}\]

\[\int\frac{\cos 2x}{\sqrt{\sin^2 2x + 8}} dx\]

\[\int\frac{\cos x}{\sqrt{4 - \sin^2 x}} dx\]

\[\int\frac{x + 1}{\sqrt{4 + 5x - x^2}} \text{ dx }\]

\[\int\frac{2 \tan x + 3}{3 \tan x + 4} \text{ dx }\]

\[\int e^\sqrt{x} \text{ dx }\]

\[\int\cos\sqrt{x}\ dx\]

\[\int\left( x + 1 \right) \text{ e}^x \text{ log } \left( x e^x \right) dx\]

\[\int x \sin^3 x\ dx\]

\[\int e^x \left( \tan x - \log \cos x \right) dx\]

\[\int\sqrt{2ax - x^2} \text{ dx}\]

\[\int\left( x + 1 \right) \sqrt{2 x^2 + 3} \text{ dx}\]

\[\int\frac{1}{x\left( x - 2 \right) \left( x - 4 \right)} dx\]

\[\int\frac{1}{x \log x \left( 2 + \log x \right)} dx\]

\[\int\frac{5 x^2 - 1}{x \left( x - 1 \right) \left( x + 1 \right)} dx\]

\[\int\frac{x^2}{\left( x^2 + 1 \right) \left( 3 x^2 + 4 \right)} dx\]

\[\int\frac{x + 1}{x \left( 1 + x e^x \right)} dx\]

\[\int\frac{x^2 - 3x + 1}{x^4 + x^2 + 1} \text{ dx }\]

If \[\int\frac{\sin^8 x - \cos^8 x}{1 - 2 \sin^2 x \cos^2 x} dx\]


\[\int\frac{1}{7 + 5 \cos x} dx =\]

\[\int\frac{1}{1 - \cos x - \sin x} dx =\]

\[\int\frac{e^x \left( 1 + x \right)}{\cos^2 \left( x e^x \right)} dx =\]

\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]


\[\int\frac{x^4 + x^2 - 1}{x^2 + 1} \text{ dx}\]

\[\int\frac{1}{x^2 + 4x - 5} \text{ dx }\]

\[\int\sqrt{\frac{1 + x}{x}} \text{ dx }\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int\frac{1}{\sin^4 x + \cos^4 x} \text{ dx}\]


\[\int\frac{1}{x \sqrt{1 + x^n}} \text{ dx}\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} \text{ dx}\]

\[\int \left( e^x + 1 \right)^2 e^x dx\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×