Advertisements
Advertisements
प्रश्न
If \[\int\frac{\sin^8 x - \cos^8 x}{1 - 2 \sin^2 x \cos^2 x} dx\]
विकल्प
-1/2
1/2
-1
1
उत्तर
`−1/2`
\[\text{If }\int\left( \frac{\sin^8 x - \cos^8 x}{1 - 2 \sin^2 x \cos^2 x} \right)dx = a \sin 2x + C ..............(1)\]
\[\text{Considering LHS of eq. (1)}\]
\[ \Rightarrow \int\frac{\left( \sin^4 x - \cos^4 x \right) \left( \sin^4 x + \cos^4 x \right)}{\left( 1 - 2 \sin^2 x \cos^2 x \right)}\]
\[ \Rightarrow \int\frac{\left( \sin^2 x - \cos^2 x \right) \left( \sin^2 x + \cos^2 x \right) \cdot \left( \sin^4 x + \cos^4 x \right) dx}{\left\{ \left( \sin^2 x + \cos^2 x \right)^2 - 2 \sin^2 x \cos^2 x \right\}}\]
\[ \Rightarrow \int\frac{\left( \sin^2 x - \cos^2 x \right) \cdot \left( \sin^4 x + \cos^4 x \right)dx}{\left( \sin^4 x + \cos^4 x + 2 \sin^2 x \cos^2 x - 2 \sin^2 x \cos^2 x \right)}\]
\[ \Rightarrow - \int\frac{\left( \cos^2 x - \sin^2 x \right) \times \left( \sin^4 x + \cos^4 x \right) dx}{\left( \sin^4 x + \cos^4 x \right)}\]
\[ \Rightarrow - \int\cos \left( 2x \right) dx ..............\left( \because \cos^2 x - \sin^2 x = \cos 2x \right) .............(2)\]
\[\text{Comparing the RHS of eq. (1) with eq. (2) we get,} \]
\[a = - \frac{1}{2}\]
APPEARS IN
संबंधित प्रश्न
If f' (x) = x + b, f(1) = 5, f(2) = 13, find f(x)
` ∫ e^{m sin ^-1 x}/ \sqrt{1-x^2} ` dx
The value of \[\int\frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx\] is equal to
\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]
\[\int\frac{1}{\sin^4 x + \cos^4 x} \text{ dx}\]
\[ \int\left( 1 + x^2 \right) \ \cos 2x \ dx\]
\[\int\frac{x + 3}{\left( x + 4 \right)^2} e^x dx =\]