हिंदी

∫ ( Sin − 1 X ) 3 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int \left( \sin^{- 1} x \right)^3 dx\]
योग

उत्तर

\[\text{We have}, \]

\[I = \int \left( \sin^{- 1} x \right)^3 dx\]

\[\text{ Let,} \sin^{- 1} x = t\]

\[ \Rightarrow \sin t = x \Rightarrow \cos t = \sqrt{1 - x^2}\]

\[\text{Differentiating both sides we get}\]

\[\text{ cos t dt = dx}\]

\[\text{Now, integral becomes}\]

\[I = \int \left( \sin^{- 1} x \right)^3 dx\]

\[ = \int t^3 \text{ cos  t dt }\]

\[ = t^3 \sin t - \int3 t^2 \text{ sin t dt}.......... \left( \text{ Using by parts} \right)\]

\[ = t^3 \sin t - 3\int t^2 \text{ sin  t  dt } \]

\[ = t^3 \sin t - 3\left[ - t^2 \cos t - \int - 2t \text{ cos t dt} \right]\]

\[ = t^3 \sin t + 3 t^2 \cos t - 6\int t \text{ cos t dt }\]

\[ = t^3 \sin t + 3 t^2 \cos t - 6\left[ t\sin t - \int\text{ sin t dt} \right]\]

\[ = t^3 \sin t + 3 t^2 \cos t - 6\left[ t \sin t + \cos t \right] + C\]

\[ = \left( \sin^{- 1} x \right)^3 x + 3 \left( \sin^{- 1} x \right)^2 \sqrt{1 - x^2} - 6\left( \sin^{- 1} x \right) x - 6\sqrt{1 - x^2} + C\]

\[ = x\left( \sin^{- 1} x \right)\left[ \left( \sin^{- 1} x \right)^2 - 6 \right] + 3\left[ \left( \sin^{- 1} x \right)^2 - 2 \right]\sqrt{1 - x^2} + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Revision Excercise | Q 115 | पृष्ठ २०५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left( 2^x + \frac{5}{x} - \frac{1}{x^{1/3}} \right)dx\]

\[\int \left( \tan x + \cot x \right)^2 dx\]

\[\int\frac{1}{\sqrt{x + 3} - \sqrt{x + 2}} dx\]

\[\int\frac{\text{sin} \left( x - \alpha \right)}{\text{sin }\left( x + \alpha \right)} dx\]

\[\int\frac{\sec x \tan x}{3 \sec x + 5} dx\]

` ∫  {sin 2x} /{a cos^2  x  + b sin^2  x }  ` dx 


\[\int\frac{x + 1}{x \left( x + \log x \right)} dx\]

`  =  ∫ root (3){ cos^2 x}  sin x   dx `


\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} dx\]

 


\[\int \tan^3 \text{2x sec 2x dx}\]

\[\int\frac{1}{\left( x + 1 \right)\left( x^2 + 2x + 2 \right)} dx\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} dx\]

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int\frac{x^2}{\sqrt{1 - x}} dx\]

\[\int\frac{e^x}{e^{2x} + 5 e^x + 6} dx\]

\[\int\frac{1}{\sqrt{8 + 3x - x^2}} dx\]

\[\int\frac{x}{x^2 + 3x + 2} dx\]

\[\int\frac{x + 1}{x^2 + x + 3} dx\]

\[\int\frac{x^2 + x + 1}{x^2 - x} dx\]

\[\int\frac{8 \cot x + 1}{3 \cot x + 2} \text{  dx }\]

\[\int x \cos^3 x\ dx\]

\[\int e^x \left( \frac{1}{x^2} - \frac{2}{x^3} \right) dx\]

\[\int\sqrt{2ax - x^2} \text{ dx}\]

\[\int\frac{x^2 + 1}{x^2 - 1} dx\]

\[\int\frac{1}{1 + x + x^2 + x^3} dx\]

\[\int\frac{x^2}{\left( x^2 + 1 \right) \left( 3 x^2 + 4 \right)} dx\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} \text{ dx}\]

If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\]  then k is equal to


\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]


\[\int \cos^3 (3x)\ dx\]

\[\int\text{ cos x  cos  2x   cos  3x  dx}\]


\[\int \tan^4 x\ dx\]

\[\int\frac{1}{a + b \tan x} \text{ dx }\]

\[\int\frac{\cos x}{\frac{1}{4} - \cos^2 x} \text{ dx }\]

\[\int\frac{x^2}{\sqrt{1 - x}} \text{ dx }\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} \text{ dx }\]

\[\int\frac{\sin 4x - 2}{1 - \cos 4x} e^{2x} \text{ dx}\]

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]


\[\int\frac{x + 3}{\left( x + 4 \right)^2} e^x dx =\]


\[\int\frac{\cos^7 x}{\sin x} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×