हिंदी

∫ 8 Cot X + 1 3 Cot X + 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{8 \cot x + 1}{3 \cot x + 2} \text{  dx }\]
योग

उत्तर

\[\text{ Let I} = \int\left( \frac{8 \cot x + 1}{3 \cot x + 2} \right)dx\]
\[ = \int\left( \frac{8 \frac{\cos x}{\sin x} + 1}{\frac{3 \cos x}{\sin x} + 2} \right)dx\]
\[ = \int\left( \frac{8 \cos x + \sin x}{3 \cos x + 2 \sin x} \right)dx\]
\[\text{ Now, let 8  cos x + sin x = A }\left( 3 \cos x + 2 \sin x \right) + B \left( - 3 \sin x + 2 \cos x \right) . . . (1) \]
\[ \Rightarrow 8 \cos x + \sin x = 3A \cos x + 2A \sin x - 3B \sin x + 2B \cos x \]
\[ \Rightarrow 8 \cos x + \sin x = \left( 3A + 2B \right) \cos x + \left( 2A - 3B \right) \sin x \]
\[\text{Equating the coefficients of like terms we get}, \]
\[2A - 3B = 1 . . . \left( 2 \right)\]
\[3A + 2B = 8 . . . \left( 3 \right)\]

Solving eq (2) and  eq (3) we get,
A = 2, B = 1
Thus, by substituting the values of A and B in eq (1) we get ,

\[I = \int\left[ \frac{2 \left( 3 \cos x + 2 \sin x \right) + 1\left( - 3 \sin x + 2 \cos x \right)}{\left( 3 \cos x + 2 \sin x \right)} \right]dx\]
\[ = 2\int\left( \frac{3 \cos x + 2 \sin x}{3 \cos x + 2 \sin x} \right)dx + \int\left( \frac{- 3 \sin x + 2 \cos x}{3 \cos x + 2 \sin x} \right)dx\]
\[ = 2\int dx + \int\left( \frac{- 3 \sin x + 2 \cos x}{3 \cos x + 2 \sin x} \right)dx\]
\[\text{ Putting   3 cos x + 2 sin x = t }\]
\[ \Rightarrow \left( \text{  - 3  sin x + 2 cos x} \right)dx = dt \]
\[ \therefore I = 2\int dx + \int\frac{1}{t}dt\]
\[ = 2x + \text{ ln }\left| t \right| + C\]
\[ = 2x + \text{ ln }\left| 3 \cos x + 2 \sin x \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.24 [पृष्ठ १२२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.24 | Q 10 | पृष्ठ १२२

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{1}{1 - \sin x} dx\]

`∫     cos ^4  2x   dx `


\[\int\frac{1}{\sqrt{1 - x^2}\left( 2 + 3 \sin^{- 1} x \right)} dx\]

\[\int\left\{ 1 + \tan x \tan \left( x + \theta \right) \right\} dx\]

\[\int\sqrt{1 + e^x} .  e^x dx\]

\[\int\frac{\sin \left( \tan^{- 1} x \right)}{1 + x^2} dx\]

\[\int\frac{e^{2x}}{1 + e^x} dx\]

\[\int \sin^7 x  \text{ dx }\]

\[\int\frac{x}{\sqrt{x^4 + a^4}} dx\]

\[\int\frac{\cos x}{\sqrt{4 - \sin^2 x}} dx\]

\[\int\frac{1}{x^{2/3} \sqrt{x^{2/3} - 4}} dx\]

\[\int\frac{x - 1}{3 x^2 - 4x + 3} dx\]

\[\int\frac{x^2 \left( x^4 + 4 \right)}{x^2 + 4} \text{ dx }\]

\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

\[\int\frac{1}{1 - \sin x + \cos x} \text{ dx }\]

\[\int x \cos^2 x\ dx\]

\[\int\frac{\sin^{- 1} x}{x^2} \text{ dx }\]

\[\int \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) \text{ dx }\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} dx\]

\[\int e^x \left( \frac{1 + \sin x}{1 + \cos x} \right) dx\]

\[\int e^x \sec x \left( 1 + \tan x \right) dx\]

\[\int e^x \left( \frac{\sin 4x - 4}{1 - \cos 4x} \right) dx\]

\[\int\left\{ \tan \left( \log x \right) + \sec^2 \left( \log x \right) \right\} dx\]

\[\int x\sqrt{x^2 + x} \text{  dx }\]

\[\int\frac{x + 1}{x \left( 1 + x e^x \right)} dx\]

\[\int\frac{\left( x - 1 \right)^2}{x^4 + x^2 + 1} \text{ dx}\]

\[\int\frac{x + 1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int\frac{\sin^6 x}{\cos^8 x} dx =\]

The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]


\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then 


\[\int \cot^4 x\ dx\]

\[\int\frac{\sin x}{\sqrt{\cos^2 x - 2 \cos x - 3}} \text{ dx }\]

\[\int\frac{1}{4 \sin^2 x + 4 \sin x \cos x + 5 \cos^2 x} \text{ dx }\]


\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]


\[ \int\left( 1 + x^2 \right) \ \cos 2x \ dx\]


\[\int \left( x + 1 \right)^2 e^x \text{ dx }\]

\[\int\log \left( x + \sqrt{x^2 + a^2} \right) \text{ dx}\]

Find :  \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\] 

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×