हिंदी

∫ X √ X 2 + X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int x\sqrt{x^2 + x} \text{  dx }\]
योग

उत्तर

\[\text{ Let I } = \int x\sqrt{x^2 + x}dx\]
\[\text{ Also, }x = \lambda\frac{d}{dx}\left( x^2 + x \right) + \mu\]
\[ \Rightarrow x = \lambda\left( 2x + 1 \right) + \mu\]
\[ \Rightarrow x = \left( 2\lambda \right)x + \lambda + \mu\]
\[\text{Equating coefficient of like terms}\]
\[2\lambda = 1\]
\[ \Rightarrow \lambda = \frac{1}{2}\]
\[\text{ And }\]
\[\lambda + \mu = 0\]
\[ \Rightarrow \mu = - \frac{1}{2}\]
\[ \therefore I = \int \left[ \frac{1}{2}\left( 2x + 1 \right) - \frac{1}{2} \right] \sqrt{x^2 + x}dx\]
\[ = \frac{1}{2}\int\left( 2x + 1 \right) \sqrt{x^2 + x}dx - \frac{1}{2}\int\sqrt{x^2 + x}dx\]
\[ = \frac{1}{2}\int \left( 2x + 1 \right) \sqrt{x^2 + x}dx - \frac{1}{2}\int\sqrt{x^2 + x + \frac{1}{4} - \frac{1}{4}}dx\]
\[ = \frac{1}{2}\int\left( 2x + 1 \right) \sqrt{x^2 + x} \text{  dx }- \frac{1}{2}\int\sqrt{\left( x + \frac{1}{2} \right)^2 - \left( \frac{1}{2} \right)^2}\text{  dx }\]
\[\text{ Let x}^2 + x = t\]
\[ \Rightarrow \left( 2x + 1 \right)dx = dt\]
\[\text{ Then,} \]
\[I = \frac{1}{2}\int\sqrt{t} \text{ dt }- \frac{1}{2}\left[ \frac{x + \frac{1}{2}}{2} \sqrt{x^2 + x} - \frac{1}{8}\text{ log }\left| \left( x + \frac{1}{2} \right) + \sqrt{x^2 + x} \right| \right] + C\]
\[ = \frac{1}{2} \times \frac{2}{3} t^\frac{3}{2} - \left( \frac{2x + 1}{8} \right) \sqrt{x^2 + x} + \frac{1}{16}\text{ log } \left| \left( x + \frac{1}{2} \right) + \sqrt{x^2} + x \right| + C\]
\[ = \frac{1}{3} \left( x^2 + x \right)^\frac{3}{2} - \left( \frac{2x + 1}{8} \right) \sqrt{x^2 + x} + \frac{1}{16}\text{ log } \left| \left( x + \frac{1}{2} \right) + \sqrt{x^2} + x \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.29 [पृष्ठ १५९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.29 | Q 10 | पृष्ठ १५९

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left( 2^x + \frac{5}{x} - \frac{1}{x^{1/3}} \right)dx\]

\[\int\frac{x^{- 1/3} + \sqrt{x} + 2}{\sqrt[3]{x}} dx\]

\[\int \left( \tan x + \cot x \right)^2 dx\]

\[\int \cot^{- 1} \left( \frac{\sin 2x}{1 - \cos 2x} \right) dx\]

If f' (x) = 8x3 − 2xf(2) = 8, find f(x)


\[\int\frac{x^2 + 5x + 2}{x + 2} dx\]


\[\int\left( 5x + 3 \right) \sqrt{2x - 1} dx\]

\[\int\frac{\cos x}{\cos \left( x - a \right)} dx\] 

\[\int\frac{1 - \sin x}{x + \cos x} dx\]

\[\int\frac{- \sin x + 2 \cos x}{2 \sin x + \cos x} dx\]

\[\int\frac{2 \cos 2x + \sec^2 x}{\sin 2x + \tan x - 5} dx\]

\[\int 5^{x + \tan^{- 1} x} . \left( \frac{x^2 + 2}{x^2 + 1} \right) dx\]

\[\  ∫    x   \text{ e}^{x^2} dx\]

\[\int \sin^5 x \cos x \text{ dx }\]

\[\int\frac{1}{\sin x \cos^3 x} dx\]

\[\int\frac{1}{\sqrt{a^2 + b^2 x^2}} dx\]

\[\int\frac{\sec^2 x}{\sqrt{4 + \tan^2 x}} dx\]

\[\int\frac{\cos x}{\sqrt{4 + \sin^2 x}} dx\]

\[\int\frac{\cos x}{\sqrt{\sin^2 x - 2 \sin x - 3}} dx\]

\[\int\frac{x + 2}{2 x^2 + 6x + 5}\text{  dx }\]

\[\int\frac{x^2 + x + 1}{x^2 - x + 1} \text{ dx }\]

\[\int e^\sqrt{x} \text{ dx }\]

\[\int \log_{10} x\ dx\]

\[\int {cosec}^3 x\ dx\]

\[\int\frac{3x + 5}{x^3 - x^2 - x + 1} dx\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{2x + 1}{\left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{4 x^4 + 3}{\left( x^2 + 2 \right) \left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

\[\int\frac{1}{\cos x + \sqrt{3} \sin x} \text{ dx } \] is equal to

\[\int\frac{2}{\left( e^x + e^{- x} \right)^2} dx\]

The value of \[\int\frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx\] is equal to


\[\int\frac{1}{e^x + 1} \text{ dx }\]

\[\int\frac{1}{x^2 + 4x - 5} \text{ dx }\]

\[\int\sqrt{\frac{1 - x}{x}} \text{ dx}\]


\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int\frac{1}{2 + \cos x} \text{ dx }\]


\[\int\frac{x^5}{\sqrt{1 + x^3}} \text{ dx }\]

\[\int e^{2x} \left( \frac{1 + \sin 2x}{1 + \cos 2x} \right) dx\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\frac{x^2 - 2}{x^5 - x} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×