हिंदी

∫ { 1 + Tan X Tan ( X + θ ) } D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\left\{ 1 + \tan x \tan \left( x + \theta \right) \right\} dx\]
योग

उत्तर

\[\text{Let I} = \int1 + \tan x \tan \left( x + \theta \right)dx\]
\[ = \int1 + \ tanx\left( \frac{\tan x + \tan \theta}{1 - \tan x \tan \theta} \right)dx\]
\[ = \int\frac{1 + \tan^2 x}{1 - \tan x \tan \theta}dx\]
\[ = \int\frac{\sec^2 x dx}{1 - \tan x \tan \theta}\]
\[Putting\ \ tan\ x = t\]
\[ \Rightarrow \text{sec}^2    x = \frac{dt}{dx} \]
\[ \Rightarrow dx = \frac{dt}{\sec^2 x}\]
\[ \therefore I = \int\frac{1}{1 - t \tan\theta}dt\]
\[ = \frac{- 1}{\tan \theta} \ln \left| 1 - t \tan \theta \right| + C \left[ \because \int\frac{1}{ax + b}dx = \frac{1}{a}\ln \left| ax + b \right| + C \right]\]
\[ = - \cot \theta \ln \left| 1 - \tan\ x \tan \theta \right| + C\]
\[ = \cot \theta \ln \left| \frac{1}{1 - \tan x \tan \theta} \right| + C\]
\[ = \cot \theta \ln \left| \frac{\ cosx \cos\theta}{\cos x \cos \theta - \sin x \sin \theta} \right| + C\]
\[ = \cot \theta \ln \left| \frac{\cos x}{\cos \left( x + \theta \right)} \right| + C' \left[ Let C' = C + \cot \theta \ln \cos\theta \right]\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.08 [पृष्ठ ४८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.08 | Q 47 | पृष्ठ ४८

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int\frac{x^3 - 3 x^2 + 5x - 7 + x^2 a^x}{2 x^2} dx\]

Integrate the following integrals:

\[\int\text { sin  x  cos  2x     sin 3x   dx}\]

\[\int\frac{e^x + 1}{e^x + x} dx\]

\[\int\frac{1}{\sin^4 x \cos^2 x} dx\]

\[\int\frac{\sec^2 x}{1 - \tan^2 x} dx\]

\[\int\frac{e^x}{1 + e^{2x}} dx\]

\[\int\frac{e^{3x}}{4 e^{6x} - 9} dx\]

\[\int\frac{1}{\sqrt{\left( x - \alpha \right)\left( \beta - x \right)}} dx, \left( \beta > \alpha \right)\]

\[\int\frac{x}{x^2 + 3x + 2} dx\]

\[\int\frac{a x^3 + bx}{x^4 + c^2} dx\]

\[\int\frac{\left( 3 \sin x - 2 \right) \cos x}{5 - \cos^2 x - 4 \sin x} dx\]

\[\int\frac{x^2 + x + 1}{x^2 - x} dx\]

\[\int\frac{x + 1}{\sqrt{x^2 + 1}} dx\]

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]

\[\int\frac{1}{3 + 2 \cos^2 x} \text{ dx }\]

\[\int\frac{1}{\cos x \left( \sin x + 2 \cos x \right)} dx\]

\[\int\frac{1}{5 + 4 \cos x} dx\]

\[\int\frac{1}{5 + 7 \cos x + \sin x} dx\]

\[\int x\left( \frac{\sec 2x - 1}{\sec 2x + 1} \right) dx\]

\[\int e^x \left( \frac{\sin 4x - 4}{1 - \cos 4x} \right) dx\]

\[\int\left( x + 1 \right) \sqrt{x^2 - x + 1} \text{ dx}\]

\[\int\frac{\sin 2x}{\left( 1 + \sin x \right) \left( 2 + \sin x \right)} dx\]

\[\int\frac{x}{\left( x^2 - a^2 \right) \left( x^2 - b^2 \right)} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)}dx\]

\[\int\frac{x^2 - 3x + 1}{x^4 + x^2 + 1} \text{ dx }\]

\[\int\frac{x^2 - 1}{x^4 + 1} \text{ dx }\]

\[\int\frac{1}{\left( 1 + x^2 \right) \sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 9}} \text{ dx}\]

\[\int x^{\sin x} \left( \frac{\sin x}{x} + \cos x . \log x \right) dx\] is equal to

\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x}\]

\[\int\frac{\sin x}{\cos 2x} \text{ dx }\]

\[\int x \sec^2 2x\ dx\]

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx}\]

\[\int\frac{x \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx}\]

\[\int\frac{x^2}{\left( x - 1 \right)^3 \left( x + 1 \right)} \text{ dx}\]

\[\int\sqrt{\frac{1 - \sqrt{x}}{1 + \sqrt{x}}} \text{ dx}\]

Find :  \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\] 

 


\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]


Find: `int (3x +5)/(x^2+3x-18)dx.`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×