हिंदी

∫ 1 5 + 7 Cos X + Sin X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{5 + 7 \cos x + \sin x} dx\]
योग

उत्तर

\[\text{ Let I }= \int \frac{1}{5 + 7 \cos x + \sin x} \text{ dx }\]
\[\text{ Putting cos x } = \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} \text{ and  sin x }= \frac{2 \tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}\]
\[ \Rightarrow I = \int \frac{1}{5 + 7 \left( \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} \right) + \frac{2 \tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}}dx\]
\[ = \int \frac{\sec^2 \left( \frac{x}{2} \right)}{5\left( 1 + \tan^2 \frac{x}{2} \right) + 7 - 7 \tan^2 \frac{x}{2} + 2 \tan \left( \frac{x}{2} \right)}dx\]
\[ = \int \frac{\sec^2 \left( \frac{x}{2} \right)}{- 2 \tan^2 \left( \frac{x}{2} \right) + 2 \tan \left( \frac{x}{2} \right) + 12}dx\]
\[\text{ Let tan }\left( \frac{x}{2} \right) = t\]
\[ \Rightarrow \frac{1}{2} \text{ sec}^2 \left( \frac{x}{2} \right)dx = dt\]
\[ \Rightarrow \text{ sec}^2 \left( \frac{x}{2} \right)dx = 2dt\]
 `therefore I =∫   {2    dt}/{- 2 t^2 + 2t + 12} `
\[ = \int \frac{dt}{- t^2 + t + 6}\]
\[ = \int \frac{- dt}{t^2 - t - 6}\]
\[ = \int \frac{- dt}{t^2 - t + \left( \frac{1}{2} \right)^2 - \left( \frac{1}{2} \right)^2 - 6}\]
\[ = \int \frac{- dt}{\left( t - \frac{1}{2} \right)^2 - \frac{1}{4} - 6}\]
\[ = \int \frac{- dt}{\left( t - \frac{1}{2} \right)^2 - \left( \frac{5}{2} \right)^2}\]
\[ = \int \frac{dt}{\left( \frac{5}{2} \right)^2 - \left( t - \frac{1}{2} \right)^2}\]
\[ = \frac{1}{2 \times \frac{5}{2}}\text{ log }\left| \frac{\frac{5}{2} + t - \frac{1}{2}}{\frac{5}{2} - t + \frac{1}{2}} \right| + C\]
\[ = \frac{1}{5}\text{ log }\left| \frac{2 + t}{3 - t} \right| + C\]
\[ = \frac{1}{5}\text{ log } \left| \frac{2 + \tan \frac{x}{2}}{3 - \tan \frac{x}{2}} \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.23 [पृष्ठ ११७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.23 | Q 15 | पृष्ठ ११७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int\frac{\cos^2 x - \sin^2 x}{\sqrt{1} + \cos 4x} dx\]

\[\int\frac{1}{2 - 3x} + \frac{1}{\sqrt{3x - 2}} dx\]

\[\int\frac{2x + 3}{\left( x - 1 \right)^2} dx\]

\[\int\frac{2x + 1}{\sqrt{3x + 2}} dx\]

\[\int \cos^2 \frac{x}{2} dx\]

 


\[\int\frac{\cos 4x - \cos 2x}{\sin 4x - \sin 2x} dx\]

\[\int\left\{ 1 + \tan x \tan \left( x + \theta \right) \right\} dx\]

\[\int\left( 4x + 2 \right)\sqrt{x^2 + x + 1}  \text{dx}\]

\[\int\frac{x}{\sqrt{x^2 + a^2} + \sqrt{x^2 - a^2}} dx\]

\[\int\frac{e^{2x}}{1 + e^x} dx\]

\[\int\frac{1}{x^2 \left( x^4 + 1 \right)^{3/4}} dx\]

\[\int\frac{x^2}{\sqrt{1 - x}} dx\]

` ∫  tan^3    x   sec^2  x   dx  `

\[\int \sin^4 x \cos^3 x \text{ dx }\]

\[\int\frac{x}{\sqrt{4 - x^4}} dx\]

\[\int\frac{1}{x\sqrt{4 - 9 \left( \log x \right)^2}} dx\]

\[\int\frac{1}{\sqrt{\left( 1 - x^2 \right)\left\{ 9 + \left( \sin^{- 1} x \right)^2 \right\}}} dx\]

\[\int\frac{\left( 3 \sin x - 2 \right) \cos x}{5 - \cos^2 x - 4 \sin x} dx\]

\[\int\frac{2x + 3}{\sqrt{x^2 + 4x + 5}} \text{ dx }\]

\[\int\frac{1}{1 + 3 \sin^2 x} \text{ dx }\]

\[\int\frac{1}{\sin x + \sqrt{3} \cos x} \text{ dx  }\]

\[\int\frac{2 \tan x + 3}{3 \tan x + 4} \text{ dx }\]

\[\int x^2 \text{ cos x dx }\]

\[\int e^\sqrt{x} \text{ dx }\]

\[\int\frac{x + \sin x}{1 + \cos x} \text{ dx }\]

\[\int x \sin x \cos 2x\ dx\]

\[\int\left( 4x + 1 \right) \sqrt{x^2 - x - 2} \text{  dx }\]

\[\int\frac{1}{\left( x - 1 \right) \left( x + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{x^2 - 3x + 1}{x^4 + x^2 + 1} \text{ dx }\]

\[\int\frac{1}{\left( \sin^{- 1} x \right) \sqrt{1 - x^2}} \text{ dx} \]

\[\int\frac{\sin x + \cos x}{\sqrt{\sin 2x}} \text{ dx}\]

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} \text{ dx }\]
 
 

\[\int\frac{x^2}{\left( x - 1 \right)^3} dx\]

\[\int \sin^3 x \cos^4 x\ \text{ dx }\]

\[\int\sqrt{\sin x} \cos^3 x\ \text{ dx }\]

\[\int\frac{1}{3 x^2 + 13x - 10} \text{ dx }\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\frac{x^2}{\left( x - 1 \right)^3 \left( x + 1 \right)} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×