English

∫ { 1 + Tan X Tan ( X + θ ) } D X - Mathematics

Advertisements
Advertisements

Question

\[\int\left\{ 1 + \tan x \tan \left( x + \theta \right) \right\} dx\]
Sum

Solution

\[\text{Let I} = \int1 + \tan x \tan \left( x + \theta \right)dx\]
\[ = \int1 + \ tanx\left( \frac{\tan x + \tan \theta}{1 - \tan x \tan \theta} \right)dx\]
\[ = \int\frac{1 + \tan^2 x}{1 - \tan x \tan \theta}dx\]
\[ = \int\frac{\sec^2 x dx}{1 - \tan x \tan \theta}\]
\[Putting\ \ tan\ x = t\]
\[ \Rightarrow \text{sec}^2    x = \frac{dt}{dx} \]
\[ \Rightarrow dx = \frac{dt}{\sec^2 x}\]
\[ \therefore I = \int\frac{1}{1 - t \tan\theta}dt\]
\[ = \frac{- 1}{\tan \theta} \ln \left| 1 - t \tan \theta \right| + C \left[ \because \int\frac{1}{ax + b}dx = \frac{1}{a}\ln \left| ax + b \right| + C \right]\]
\[ = - \cot \theta \ln \left| 1 - \tan\ x \tan \theta \right| + C\]
\[ = \cot \theta \ln \left| \frac{1}{1 - \tan x \tan \theta} \right| + C\]
\[ = \cot \theta \ln \left| \frac{\ cosx \cos\theta}{\cos x \cos \theta - \sin x \sin \theta} \right| + C\]
\[ = \cot \theta \ln \left| \frac{\cos x}{\cos \left( x + \theta \right)} \right| + C' \left[ Let C' = C + \cot \theta \ln \cos\theta \right]\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.08 [Page 48]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.08 | Q 47 | Page 48

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{1}{\sqrt{x + a} + \sqrt{x + b}} dx\]

\[\int\frac{1 + \cos 4x}{\cot x - \tan x} dx\]

\[\int\frac{1}{\sqrt{1 - \cos 2x}} dx\]

\[\int\frac{x + 1}{x \left( x + \log x \right)} dx\]

\[\int\sqrt{1 + e^x} .  e^x dx\]

\[\int x^3 \sin x^4 dx\]

\[\int\frac{\left( x + 1 \right) e^x}{\cos^2 \left( x e^x \right)} dx\]

\[\int\frac{1}{x^2 \left( x^4 + 1 \right)^{3/4}} dx\]

\[\int \cot^5 x  \text{ dx }\]

\[\int \cos^7 x \text{ dx  } \]

Evaluate the following integrals:

\[\int\cos\left\{ 2 \cot^{- 1} \sqrt{\frac{1 + x}{1 - x}} \right\}dx\]

\[\int\frac{1}{\sqrt{2x - x^2}} dx\]

\[\int\frac{1}{\sqrt{5 - 4x - 2 x^2}} dx\]

\[\int\frac{x + 1}{x^2 + x + 3} dx\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 2x - 1}}\text{  dx }\]

\[\int\frac{x}{\sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int\text{ log }\left( x + 1 \right) \text{ dx }\]

\[\int x \text{ sin 2x dx }\]

\[\int x \cos^2 x\ dx\]

\[\int \sin^{- 1} \sqrt{x} \text{ dx }\]

\[\int\left( x + 1 \right) \text{ log  x  dx }\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{ dx }\]

\[\int e^x \sec x \left( 1 + \tan x \right) dx\]

\[\int x\sqrt{x^2 + x} \text{  dx }\]

\[\int\frac{x}{\left( x - 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{1}{1 + x + x^2 + x^3} dx\]

\[\int\frac{dx}{\left( x^2 + 1 \right) \left( x^2 + 4 \right)}\]

\[\int\frac{1}{x \left( x^4 + 1 \right)} dx\]

Find \[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)^2}dx\]

\[\int\frac{x + 1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

\[\int\frac{1}{\cos x + \sqrt{3} \sin x} \text{ dx } \] is equal to

\[\int\frac{2}{\left( e^x + e^{- x} \right)^2} dx\]

\[\int \tan^5 x\ dx\]

\[\int\frac{x^2}{\left( x - 1 \right)^3} dx\]

\[\int\frac{1}{\sqrt{3 - 2x - x^2}} \text{ dx}\]

\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]


\[\int {cosec}^4 2x\ dx\]


\[\int\frac{1}{x\sqrt{1 + x^3}} \text{ dx}\]

\[\int\frac{e^{m \tan^{- 1} x}}{\left( 1 + x^2 \right)^{3/2}} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×