English

∫ 2 X + 1 √ X 2 + 2 X − 1 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{2x + 1}{\sqrt{x^2 + 2x - 1}}\text{  dx }\]
Sum

Solution

\[\text{ Let I } = \int\frac{\left( 2x + 1 \right) dx}{\sqrt{x^2 + 2x - 1}}\]
\[ = \int\frac{\left( 2x + 2 - 1 \right) dx}{\sqrt{x^2 + 2x - 1}}\]
\[ = \int\frac{\left( 2x + 2 \right) dx}{\sqrt{x^2 + 2x - 1}} - \int\frac{dx}{\sqrt{x^2 + 2x - 1}}\]
\[ = \int\frac{\left( 2x + 2 \right) dx}{\sqrt{x^2 + 2x - 1}} - \int\frac{dx}{\sqrt{x^2 + 2x + 1 - 1 - 1}}\]
\[ = \int\frac{\left( 2x + 2 \right) dx}{\sqrt{x^2 + 2x - 1}} - \int\frac{dx}{\sqrt{\left( x + 1 \right)^2 - \left( \sqrt{2} \right)^2}}\]
\[\text{ let x}^2 + 2x - 1 = t\]
\[ \Rightarrow \left( 2x + 2 \right) dx = dt\]
\[I = \int\frac{dt}{\sqrt{t}} - \int\frac{dx}{\sqrt{\left( x + 1 \right)^2 - \left( \sqrt{2} \right)^2}}\]
\[ = 2\sqrt{t} - \text{ log} \left| x + 1 + \sqrt{\left( x + 1 \right)^2 - \left( \sqrt{2} \right)^2} \right| + C\]
\[ = 2\sqrt{x^2 + 2x - 1} - \text{ log }\left| x + 1 + \sqrt{x^2 + 2x - 1} \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.21 [Page 110]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.21 | Q 2 | Page 110

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{\left( x + 1 \right)\left( x - 2 \right)}{\sqrt{x}} dx\]

\[\int\left( \sec^2  x + {cosec}^2  x \right)  dx\]

\[\int\frac{1 - \cos 2x}{1 + \cos 2x} dx\]

 
\[\int\frac{\cos x}{1 - \cos x} \text{dx }or \int\frac{\cot x}{\text{cosec         } {x }- \cot x} dx\]

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

`  ∫  sin 4x cos  7x  dx  `

\[\int\frac{1 + \cot x}{x + \log \sin x} dx\]

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int\frac{\cos^3 x}{\sqrt{\sin x}} dx\]

\[\int\left( 4x + 2 \right)\sqrt{x^2 + x + 1}  \text{dx}\]

\[\int2x    \sec^3 \left( x^2 + 3 \right) \tan \left( x^2 + 3 \right) dx\]

\[\int \tan^3 \text{2x sec 2x dx}\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} dx\]

\[\int\frac{x^2}{\sqrt{3x + 4}} dx\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

\[\int\frac{e^x}{\left( 1 + e^x \right)\left( 2 + e^x \right)} dx\]

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} dx\]

\[\int\frac{x^2 + 1}{x^2 - 5x + 6} dx\]

\[\int\frac{5x + 3}{\sqrt{x^2 + 4x + 10}} \text{ dx }\]

\[\int\frac{1}{3 + 2 \cos^2 x} \text{ dx }\]

\[\int\frac{1}{5 + 7 \cos x + \sin x} dx\]

\[\int x \cos x\ dx\]

\[\int \log_{10} x\ dx\]

 
` ∫  x tan ^2 x dx 

\[\int\frac{\sin^{- 1} x}{x^2} \text{ dx }\]

\[\int \sin^3 \sqrt{x}\ dx\]

\[\int e^x \frac{x - 1}{\left( x + 1 \right)^3} \text{ dx }\]

\[\int\frac{e^x}{x}\left\{ \text{ x }\left( \log x \right)^2 + 2 \log x \right\} dx\]

\[\int\left( x - 2 \right) \sqrt{2 x^2 - 6x + 5} \text{  dx }\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6} dx\]

\[\int\frac{x^2 + x - 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{x^2 - 3x + 1}{x^4 + x^2 + 1} \text{ dx }\]

\[\int \tan^5 x\ dx\]

\[\int \sin^3 x \cos^4 x\ \text{ dx }\]

\[\int \sin^5 x\ dx\]

\[\int \log_{10} x\ dx\]

\[\int\log \left( x + \sqrt{x^2 + a^2} \right) \text{ dx}\]

\[\int\frac{x^2}{\left( x - 1 \right)^3 \left( x + 1 \right)} \text{ dx}\]

\[\int \sin^3  \left( 2x + 1 \right)  \text{dx}\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×