English

∫ Sin − 1 X X 2 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{\sin^{- 1} x}{x^2} \text{ dx }\]
Sum

Solution

\[\text{ Let I} = \int \frac{\sin^{- 1} x}{x^2} \text{ dx }\]

\[\text{ Putting x }= \sin \theta\]

\[ \Rightarrow \theta = \sin^{- 1} x\]

\[ \text{and}\ dx = \cos \text{ θ  dθ }\]

\[ \therefore I = \int \frac{\theta . \cos \theta}{\sin^2 \theta}d\theta\]

\[ = \int \theta . \left( \frac{\cos \theta}{\sin \theta} \right) \times \frac{1}{\sin \theta} d\theta\]

\[ = \int \theta_I . \text{ cosec} _{II}  θ  \cot \text{ θ  dθ }\]

\[ = \theta\int cosec \theta \cot \text{ θ  dθ } - \int\left\{ \frac{d}{d\theta}\left( \theta \right)\int cosec \theta \cot \text{ θ  dθ }\right\}d\theta\]

\[ = \theta \left( - \text{ cosec }\theta \right) - \int1 . \left( - cosec \theta \right) d\theta\]

\[ = - \theta \text{ cosec }\theta + \int cosec \text{ θ  dθ }\]

\[ = - \theta \text{ cosec }\theta + \text{ ln }\left| \text{ cosec }\theta - \cot \theta \right| + C\]

\[ = \frac{- \theta}{\sin \theta} + \text{ ln }\left| \frac{1 - \text{ cos }\theta}{\sin \theta} \right| + C\]

\[ = \frac{- \theta}{\sin \theta} + \text{ ln} \left| \frac{1 - \sqrt{1 - \sin^2 \theta}}{\sin \theta} \right| + C\]

\[ = \frac{- \sin^{- 1} x}{x} + \text{ ln } \left| \frac{1 - \sqrt{1 - x^2}}{x} \right| + C \left[ \because \theta = \sin^{- 1} x \right]\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.25 [Page 134]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.25 | Q 39 | Page 134

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left( 2 - 3x \right) \left( 3 + 2x \right) \left( 1 - 2x \right) dx\]

\[\int\frac{\cos x}{1 + \cos x} dx\]

If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f

\[\left( \frac{\pi}{2} \right)\] = 5, find f(x)
 

\[\int\frac{3x + 5}{\sqrt{7x + 9}} dx\]

\[\int\frac{x \sin^{- 1} x^2}{\sqrt{1 - x^4}} dx\]

\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} dx\]

\[\int x^2 \sqrt{x + 2} \text{  dx  }\]

` ∫    \sqrt{tan x}     sec^4  x   dx `


\[\int {cosec}^4  \text{ 3x } \text{ dx } \]

\[\int \sin^7 x  \text{ dx }\]

\[\int\frac{1}{\sin^3 x \cos^5 x} dx\]

Evaluate the following integrals:

\[\int\cos\left\{ 2 \cot^{- 1} \sqrt{\frac{1 + x}{1 - x}} \right\}dx\]

` ∫  {1}/{a^2 x^2- b^2}dx`

\[\int\frac{\cos x}{\sin^2 x + 4 \sin x + 5} dx\]

\[\int\frac{x}{x^4 - x^2 + 1} dx\]

\[\int\frac{\cos 2x}{\sqrt{\sin^2 2x + 8}} dx\]

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} dx\]

\[\int\frac{x + 1}{\sqrt{x^2 + 1}} dx\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right)\left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int\frac{1}{5 + 7 \cos x + \sin x} dx\]

\[\int\sqrt{3 - 2x - 2 x^2} \text{ dx}\]

\[\int\left( 2x - 5 \right) \sqrt{2 + 3x - x^2} \text{  dx }\]

\[\int\frac{1}{x^4 - 1} dx\]

\[\int\frac{x^2 - 1}{x^4 + 1} \text{ dx }\]

\[\int\frac{1}{\left( 1 + x^2 \right) \sqrt{1 - x^2}} \text{ dx }\]

Write the anti-derivative of  \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]


If \[\int\frac{\cos 8x + 1}{\tan 2x - \cot 2x} dx\]


If \[\int\frac{\sin^8 x - \cos^8 x}{1 - 2 \sin^2 x \cos^2 x} dx\]


\[\int\left( x - 1 \right) e^{- x} dx\] is equal to

\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right) \left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int {cosec}^4 2x\ dx\]


\[\int \sec^6 x\ dx\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} \text{ dx }\]

\[\int \left( \sin^{- 1} x \right)^3 dx\]

\[\int\frac{x \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx}\]

\[\int \sin^3  \left( 2x + 1 \right)  \text{dx}\]


\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×