Advertisements
Advertisements
Question
Solution
\[\text{ Let I} = \int \frac{\sin^{- 1} x}{x^2} \text{ dx }\]
\[\text{ Putting x }= \sin \theta\]
\[ \Rightarrow \theta = \sin^{- 1} x\]
\[ \text{and}\ dx = \cos \text{ θ dθ }\]
\[ \therefore I = \int \frac{\theta . \cos \theta}{\sin^2 \theta}d\theta\]
\[ = \int \theta . \left( \frac{\cos \theta}{\sin \theta} \right) \times \frac{1}{\sin \theta} d\theta\]
\[ = \int \theta_I . \text{ cosec} _{II} θ \cot \text{ θ dθ }\]
\[ = \theta\int cosec \theta \cot \text{ θ dθ } - \int\left\{ \frac{d}{d\theta}\left( \theta \right)\int cosec \theta \cot \text{ θ dθ }\right\}d\theta\]
\[ = \theta \left( - \text{ cosec }\theta \right) - \int1 . \left( - cosec \theta \right) d\theta\]
\[ = - \theta \text{ cosec }\theta + \int cosec \text{ θ dθ }\]
\[ = - \theta \text{ cosec }\theta + \text{ ln }\left| \text{ cosec }\theta - \cot \theta \right| + C\]
\[ = \frac{- \theta}{\sin \theta} + \text{ ln }\left| \frac{1 - \text{ cos }\theta}{\sin \theta} \right| + C\]
\[ = \frac{- \theta}{\sin \theta} + \text{ ln} \left| \frac{1 - \sqrt{1 - \sin^2 \theta}}{\sin \theta} \right| + C\]
\[ = \frac{- \sin^{- 1} x}{x} + \text{ ln } \left| \frac{1 - \sqrt{1 - x^2}}{x} \right| + C \left[ \because \theta = \sin^{- 1} x \right]\]
APPEARS IN
RELATED QUESTIONS
If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f
` ∫ \sqrt{tan x} sec^4 x dx `
Evaluate the following integrals:
Write the anti-derivative of \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]
If \[\int\frac{\cos 8x + 1}{\tan 2x - \cot 2x} dx\]
If \[\int\frac{\sin^8 x - \cos^8 x}{1 - 2 \sin^2 x \cos^2 x} dx\]
\[\int {cosec}^4 2x\ dx\]
\[\int \sin^3 \left( 2x + 1 \right) \text{dx}\]