Advertisements
Advertisements
Question
\[\int \sin^7 x \text{ dx }\]
Sum
Solution
∫ sin7 x dx
= ∫ sin6 x . sin x dx
= ∫ (sin2 x)3 sin x dx
= ∫ (1 – cos2 x)3 sin x dx
Let cos x = t
⇒ –sin x dx = dt
⇒ sin x dx = – dt
Now, ∫ (1 – cos2 x)3 sin x dx
= ∫ (1 – t2)3 . (–dt)
= –∫ (1 – t6 – 3t2 + 3t4) dt
\[= - \left[ t - \frac{t^7}{7} - t^3 + \frac{3 t^5}{5} \right] + C\]
\[ = - \left[ \cos x - \frac{\cos^7 x}{7} - \cos^3 x + \frac{3}{5} \cos^5 x \right] + C\]
\[ = - \cos x + \frac{1}{7} \cos^7 x + \cos^3 x - \frac{3}{5} \cos^5 x + C\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int \left( \sqrt{x} - \frac{1}{\sqrt{x}} \right)^2 dx\]
\[\int\left( \sec^2 x + {cosec}^2 x \right) dx\]
\[\int\frac{1}{1 - \sin x} dx\]
\[\int \left( 2x - 3 \right)^5 + \sqrt{3x + 2} \text{dx} \]
\[\int \tan^2 \left( 2x - 3 \right) dx\]
\[\int\frac{1}{\text{cos}^2\text{ x }\left( 1 - \text{tan x} \right)^2} dx\]
\[\int\frac{x^2 + 3x - 1}{\left( x + 1 \right)^2} dx\]
\[\int\frac{3x + 5}{\sqrt{7x + 9}} dx\]
` ∫ sin 4x cos 7x dx `
\[\int\frac{\sin 2x}{\sin \left( x - \frac{\pi}{6} \right) \sin \left( x + \frac{\pi}{6} \right)} dx\]
\[\int\left( 4x + 2 \right)\sqrt{x^2 + x + 1} \text{dx}\]
` ∫ x {tan^{- 1} x^2}/{1 + x^4} dx`
\[\int\frac{e^{2x}}{1 + e^x} dx\]
\[\int\frac{x^2}{\sqrt{1 - x}} dx\]
\[\int\frac{1}{\sqrt{a^2 + b^2 x^2}} dx\]
\[\int\frac{x^2}{x^6 + a^6} dx\]
\[\int\frac{\left( 3 \sin x - 2 \right) \cos x}{5 - \cos^2 x - 4 \sin x} dx\]
\[\int\frac{x + 2}{2 x^2 + 6x + 5}\text{ dx }\]
\[\int\frac{\left( 1 - x^2 \right)}{x \left( 1 - 2x \right)} \text
{dx\]
\[\int x^3 \text{ log x dx }\]
\[\int2 x^3 e^{x^2} dx\]
∴\[\int e^{2x} \left( - \sin x + 2 \cos x \right) dx\]
\[\int\frac{x^2}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]
\[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 3 \right)} dx\]
\[\int\frac{1}{x \log x \left( 2 + \log x \right)} dx\]
\[\int\frac{x}{\left( x - 1 \right)^2 \left( x + 2 \right)} dx\]
\[\int\frac{x^2}{\left( x - 1 \right) \left( x + 1 \right)^2} dx\]
\[\int\frac{2x + 1}{\left( x - 2 \right) \left( x - 3 \right)} dx\]
Evaluate the following integral:
\[\int\frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)}dx\]
\[\int\frac{x}{\left( x^2 + 2x + 2 \right) \sqrt{x + 1}} \text{ dx}\]
Write a value of
\[\int e^{3 \text{ log x}} x^4\text{ dx}\]
\[\int\frac{x^4 + x^2 - 1}{x^2 + 1} \text{ dx}\]
\[\int\frac{1}{\left( \sin^{- 1} x \right) \sqrt{1 - x^2}} \text{ dx} \]
\[\int\frac{1}{x^2 + 4x - 5} \text{ dx }\]
\[\int\frac{\sqrt{a} - \sqrt{x}}{1 - \sqrt{ax}}\text{ dx }\]
\[\int\frac{\sin^6 x}{\cos x} \text{ dx }\]
\[\int\frac{\log x}{x^3} \text{ dx }\]
Find : \[\int\frac{dx}{\sqrt{3 - 2x - x^2}}\] .