English

∫ 2 X + 1 ( X − 2 ) ( X − 3 ) D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{2x + 1}{\left( x - 2 \right) \left( x - 3 \right)} dx\]
Sum

Solution

We have,
\[I = \int \frac{\left( 2x + 1 \right)dx}{\left( x - 2 \right) \left( x - 3 \right)}\]
\[\text{Let }\frac{2x + 1}{\left( x - 2 \right) \left( x - 3 \right)} = \frac{A}{x - 2} + \frac{B}{x - 3}\]
\[ \Rightarrow \frac{2x + 1}{\left( x - 2 \right) \left( x - 3 \right)} = \frac{A\left( x - 3 \right) + B\left( x - 2 \right)}{\left( x - 2 \right) \left( x - 3 \right)}\]
\[ \Rightarrow 2x + 1 = A\left( x - 3 \right) + B\left( x - 2 \right)\]
\[\text{Putting }x - 3 = 0\]
\[ \Rightarrow x = 3\]
\[ \therefore 7 = A \times 0 + B \times \left( 3 - 2 \right)\]
\[ \Rightarrow B = 7\]
\[\text{Putting }x - 2 = 0\]
\[ \Rightarrow x = 2\]
\[ \therefore 5 = A\left( - 1 \right)\]
\[ \Rightarrow A = - 5\]
\[ \therefore I = - 5\int\frac{dx}{x - 2} + 7\int\frac{dx}{x - 3}\]
\[ = - 5 \log \left| x - 2 \right| + 7 \log \left| x - 3 \right| + C\]
\[ = \log \left| x - 3 \right|^7 - \log \left| x - 2 \right|^5 + C\]
\[ = \log \left| \frac{\left( x - 3 \right)^7}{\left( x - 2 \right)^5} \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.30 [Page 177]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.30 | Q 52 | Page 177

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int\frac{1}{1 - \cos x} dx\]

` ∫  {cosec x} / {"cosec x "- cot x} ` dx      


\[\int \tan^{- 1} \left( \frac{\sin 2x}{1 + \cos 2x} \right) dx\]

\[\int\frac{1}{\sqrt{x + 1} + \sqrt{x}} dx\]

` ∫   sin x  \sqrt (1-cos 2x)    dx `

 


` ∫   cos  3x   cos  4x` dx  

\[\int\frac{1}{      x      \text{log x } \text{log }\left( \text{log x }\right)} dx\]

\[\int\frac{x + 1}{x \left( x + \log x \right)} dx\]

` ∫  tan 2x tan 3x  tan 5x    dx  `

\[\int\left( 4x + 2 \right)\sqrt{x^2 + x + 1}  \text{dx}\]

\[\int\frac{x^2}{\sqrt{3x + 4}} dx\]

` ∫   tan   x   sec^4  x   dx  `


\[\int {cosec}^4  \text{ 3x } \text{ dx } \]

\[\int\frac{1}{x^2 + 6x + 13} dx\]

\[\int\frac{1}{\sqrt{5 - 4x - 2 x^2}} dx\]

\[\int\frac{1}{x\sqrt{4 - 9 \left( \log x \right)^2}} dx\]

\[\int\frac{1}{x^{2/3} \sqrt{x^{2/3} - 4}} dx\]

\[\int\frac{a x^3 + bx}{x^4 + c^2} dx\]

\[\int\frac{x^3}{x^4 + x^2 + 1}dx\]

\[\int\frac{\left( 1 - x^2 \right)}{x \left( 1 - 2x \right)} \text
{dx\]

\[\int\frac{1}{13 + 3 \cos x + 4 \sin x} dx\]

\[\int\frac{1}{\sqrt{3} \sin x + \cos x} dx\]

\[\int \left( \log x \right)^2 \cdot x\ dx\]

\[\int x^3 \tan^{- 1}\text{  x dx }\]

\[\int\frac{x^2 + 1}{x\left( x^2 - 1 \right)} dx\]

\[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 3 \right)} dx\]

\[\int\frac{5}{\left( x^2 + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{1}{1 + x + x^2 + x^3} dx\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{x^2}{\left( x - 1 \right) \sqrt{x + 2}}\text{  dx}\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} dx\]

\[\int\frac{\left( 2^x + 3^x \right)^2}{6^x} \text{ dx }\] 

\[\int\frac{\sin x}{\sqrt{1 + \sin x}} dx\]

\[\int\frac{1}{\sin x + \sin 2x} \text{ dx }\]

\[\int \sec^4 x\ dx\]


\[\int\sqrt{\frac{a + x}{x}}dx\]
 

\[\int \left( x + 1 \right)^2 e^x \text{ dx }\]

\[\int\frac{e^{m \tan^{- 1} x}}{\left( 1 + x^2 \right)^{3/2}} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×