English

∫ X 2 + 1 X ( X 2 − 1 ) D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{x^2 + 1}{x\left( x^2 - 1 \right)} dx\]
Sum

Solution

\[\int\frac{\left( x^2 + 1 \right)}{x \left( x^2 - 1 \right)}dx\]
\[ = \int\frac{\left( x^2 + 1 \right)}{x \left( x - 1 \right) \left( x + 1 \right)}dx\]
\[\text{Let }\frac{x^2 + 1}{x \left( x - 1 \right) \left( x + 1 \right)} = \frac{A}{x} + \frac{B}{x - 1} + \frac{C}{x + 1}\]
\[ \Rightarrow \frac{x^2 + 1}{x \left( x - 1 \right) \left( x + 1 \right)} = \frac{A \left( x - 1 \right) \left( x + 1 \right) + B \left( x \right) \left( x + 1 \right) + C \left( x \right) \left( x - 1 \right)}{x \left( x - 1 \right) \left( x + 1 \right)}\]
\[ \Rightarrow x^2 + 1 = A \left( x - 1 \right) \left( x + 1 \right) + B \left( x \right) \left( x + 1 \right) + C \left( x \right) \left( x - 1 \right) .............(1)\]
\[\text{Putting }x - 1 = 0\text{ or }x = 1\text{ in eq. (1)}\]
\[ \Rightarrow 1 + 1 = A \times 0 + B \left( 1 \right) \left( 1 + 1 \right) + C \times 0\]
\[ \Rightarrow B = 1\]
\[\text{Putting x = 0 in eq. (1)}\]
\[ \Rightarrow 0 + 1 = A \left( 0 - 1 \right) \left( 0 + 1 \right)\]
\[ \Rightarrow A = - 1\]
\[\text{Putting }x + 1 = 0\text{ or }x = - 1\text{ in eq. (1)}\]
\[ \Rightarrow \left( - 1 \right)^2 + 1 = A \times 0 + B \times 0 + C\left( - 1 \right) \left( - 1 - 1 \right)\]
\[ \Rightarrow 2 = C \times 2\]
\[ \Rightarrow C = 1\]
\[ \therefore \frac{x^2 + 1}{x \left( x^2 - 1 \right)} = \frac{- 1}{x} + \frac{1}{x - 1} + \frac{1}{x + 1}\]
\[ \Rightarrow \int\frac{\left( x^2 + 1 \right)}{x \left( x^2 - 1 \right)}dx = - \int\frac{1}{x}dx + \int\frac{1}{x - 1}dx + \int\frac{1}{x + 1}dx\]
\[ = - \ln \left| x \right| + \ln \left| x - 1 \right| + \ln \left| x + 1 \right| + C\]
\[ = - \ln \left| x \right| + \ln \left| x^2 - 1 \right| + C\]
\[ = \ln \left| \frac{x^2 - 1}{x} \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.30 [Page 176]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.30 | Q 8 | Page 176

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

` ∫  1/ {1+ cos   3x}  ` dx


\[\int\frac{\sec x \tan x}{3 \sec x + 5} dx\]

` ∫  {sin 2x} /{a cos^2  x  + b sin^2  x }  ` dx 


\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} dx\]

 


\[\ \int\ x \left( 1 - x \right)^{23} dx\]

 


` ∫  tan^5 x   sec ^4 x   dx `

\[\int \cot^5 \text{ x } {cosec}^4 x\text{ dx }\]

\[\int\frac{1}{\sin x \cos^3 x} dx\]

Evaluate the following integrals:
\[\int\frac{x^2}{\left( a^2 - x^2 \right)^{3/2}}dx\]

\[\int\frac{3 x^5}{1 + x^{12}} dx\]

\[\int\frac{x - 1}{3 x^2 - 4x + 3} dx\]

\[\int\frac{a x^3 + bx}{x^4 + c^2} dx\]

\[\int\frac{\left( x - 1 \right)^2}{x^2 + 2x + 2} dx\]

\[\int\frac{x}{\sqrt{x^2 + 6x + 10}} \text{ dx }\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int x e^x \text{ dx }\]

\[\int \sec^{- 1} \sqrt{x}\ dx\]

\[\int\left( x + 1 \right) \text{ e}^x \text{ log } \left( x e^x \right) dx\]

\[\int x^3 \tan^{- 1}\text{  x dx }\]

\[\int \cos^3 \sqrt{x}\ dx\]

\[\int e^x \left( \tan x - \log \cos x \right) dx\]

\[\int e^x \left( \cot x - {cosec}^2 x \right) dx\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2}  \text{ dx }\]

\[\int\frac{e^x}{x}\left\{ \text{ x }\left( \log x \right)^2 + 2 \log x \right\} dx\]

\[\int e^x \cdot \frac{\sqrt{1 - x^2} \sin^{- 1} x + 1}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\left( 2x - 5 \right) \sqrt{2 + 3x - x^2} \text{  dx }\]

\[\int\frac{3 + 4x - x^2}{\left( x + 2 \right) \left( x - 1 \right)} dx\]

\[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 3 \right)} dx\]

\[\int\frac{1}{x \log x \left( 2 + \log x \right)} dx\]

\[\int\frac{1}{x\left( x^n + 1 \right)} dx\]

\[\int\frac{x^2 + 1}{\left( x - 2 \right)^2 \left( x + 3 \right)} dx\]

\[\int\frac{\cos x}{\left( 1 - \sin x \right)^3 \left( 2 + \sin x \right)} dx\]

Write the anti-derivative of  \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]


The value of \[\int\frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx\] is equal to


\[\int \tan^4 x\ dx\]

\[\int\sqrt{\frac{1 + x}{x}} \text{ dx }\]

\[\int\frac{1}{1 + 2 \cos x} \text{ dx }\]

\[\int\frac{1}{\sin^4 x + \cos^4 x} \text{ dx}\]


\[\int\sqrt{3 x^2 + 4x + 1}\text{  dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×