English

∫ Sin 2 X Sin 4 X + Cos 4 X D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]
Sum

Solution

\[\text{ Let I }= \int \frac{\text{ sin }\left( \text{ 2x }\right)}{\sin^4 x + \cos^4 x} \text{ dx }\]
\[ = \int \frac{2 \sin x \cos x}{\sin^4 x + \cos^4 x} \text{ dx }\]
\[\text{Dividing numerator and denominator by} \cos^4 x\]
\[ \Rightarrow I = \int \frac{\left( \frac{2 \sin x \cos x}{\cos^4 x} \right)}{\tan^4 x + 1}\text{ dx }\]
\[ = \int \frac{2 \tan x . \sec^2 x}{\left( \tan^2 x \right)^2 + 1} \text{ dx }\]
\[\text{ Let tan}^2 x = t\]
\[ \Rightarrow 2 \tan x \sec^2 x \text  { dx } = dt\]
\[ = \int \frac{dt}{t^2 + 1}\]
\[ \therefore I = \tan^{- 1} \left( t \right) + C\]
\[ = \tan^{- 1} \left( \tan^2 x \right) + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.22 [Page 114]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.22 | Q 8 | Page 114

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left( x^e + e^x + e^e \right) dx\]

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int\frac{\sin^3 x - \cos^3 x}{\sin^2 x \cos^2 x} dx\]

 
\[\int\frac{\cos x}{1 - \cos x} \text{dx }or \int\frac{\cot x}{\text{cosec         } {x }- \cot x} dx\]

\[\int\frac{1}{1 - \sin x} dx\]

\[\int\frac{1}{2 - 3x} + \frac{1}{\sqrt{3x - 2}} dx\]

\[\int\frac{1}{\sqrt{x + 3} - \sqrt{x + 2}} dx\]

` ∫ {"cosec"   x }/ { log  tan   x/2 ` dx 

\[\int\frac{\tan x}{\sqrt{\cos x}} dx\]

\[\int x^3 \sin x^4 dx\]

\[\int\frac{e^{2x}}{1 + e^x} dx\]

\[\int \cot^5 \text{ x } {cosec}^4 x\text{ dx }\]

` = ∫1/{sin^3 x cos^ 2x} dx`


\[\int\frac{1}{4 x^2 + 12x + 5} dx\]

\[\int\frac{x - 1}{3 x^2 - 4x + 3} dx\]

\[\int\frac{\left( 3\sin x - 2 \right)\cos x}{13 - \cos^2 x - 7\sin x}dx\]

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

\[\int\frac{\cos x}{\cos 3x} \text{ dx }\]

\[\int\frac{1}{5 + 7 \cos x + \sin x} dx\]

\[\int\frac{2 \sin x + 3 \cos x}{3 \sin x + 4 \cos x} dx\]

\[\int\frac{1}{4 + 3 \tan x} dx\]

\[\int\text{ log }\left( x + 1 \right) \text{ dx }\]

\[\int \cos^3 \sqrt{x}\ dx\]

\[\int e^x \cdot \frac{\sqrt{1 - x^2} \sin^{- 1} x + 1}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int x^2 \sqrt{a^6 - x^6} \text{ dx}\]

\[\int\frac{1}{x \left( x^4 + 1 \right)} dx\]

\[\int\frac{1}{\sin x \left( 3 + 2 \cos x \right)} dx\]

\[\int\frac{\left( x - 1 \right)^2}{x^4 + x^2 + 1} \text{ dx}\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{2x + 3}} \text{ dx }\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 9}} \text{ dx}\]

If \[\int\frac{\sin^8 x - \cos^8 x}{1 - 2 \sin^2 x \cos^2 x} dx\]


\[\int\frac{\sin^2 x}{\cos^4 x} dx =\]

\[ \int\left( 1 + x^2 \right) \ \cos 2x \ dx\]


\[\int x^3 \left( \log x \right)^2\text{  dx }\]

\[\int x^2 \tan^{- 1} x\ dx\]

\[\int\frac{x^2}{\left( x - 1 \right)^3 \left( x + 1 \right)} \text{ dx}\]

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×