Advertisements
Advertisements
Question
\[\int\text{ log }\left( x + 1 \right) \text{ dx }\]
Sum
Solution
\[\int \text{ log } \left( x + 1 \right)dx\]
\[ = \int1 . \log \left( x + 1 \right)dx\]
\[\text{Taking log} \left( x + 1 \right) \text{ as the first function and 1 as the second function} . \]
\[ = \text{ log }\left( x + 1 \right)\int \text{ 1 dx } - \int\left[ \frac{d}{dx}\left\{ \log\left( x + 1 \right) \right\}\int1 dx \right]dx\]
\[ = x \text{ log} \left( x + 1 \right) - \int\frac{x}{x + 1}dx\]
\[ = x \text{ log }\left( x + 1 \right) - \int\frac{x + 1}{x + 1} - \frac{1}{x + 1}dx\]
\[ = x \text{ log }\left( x + 1 \right) - x + \text{ log } \left| x + 1 \right| + C\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\left( 2^x + \frac{5}{x} - \frac{1}{x^{1/3}} \right)dx\]
\[\int\left( 2 - 3x \right) \left( 3 + 2x \right) \left( 1 - 2x \right) dx\]
\[\int\sqrt{x}\left( x^3 - \frac{2}{x} \right) dx\]
\[\int \left( 3x + 4 \right)^2 dx\]
\[\int\frac{\tan x}{\sec x + \tan x} dx\]
\[\int\frac{1 - \cos x}{1 + \cos x} dx\]
` ∫ tan 2x tan 3x tan 5x dx `
\[\int\frac{\cos x - \sin x}{1 + \sin 2x} dx\]
` ∫ e^{m sin ^-1 x}/ \sqrt{1-x^2} ` dx
\[\int\frac{x^5}{\sqrt{1 + x^3}} dx\]
\[\int \sec^4 2x \text{ dx }\]
\[\int \cot^n {cosec}^2 \text{ x dx } , n \neq - 1\]
\[\int x \cos^3 x^2 \sin x^2 \text{ dx }\]
` = ∫1/{sin^3 x cos^ 2x} dx`
\[\int\frac{1}{4 x^2 + 12x + 5} dx\]
\[\int\frac{1}{1 + x - x^2} \text{ dx }\]
\[\int\frac{1}{x \left( x^6 + 1 \right)} dx\]
\[\int\frac{\cos x - \sin x}{\sqrt{8 - \sin2x}}dx\]
\[\int\frac{\left( 1 - x^2 \right)}{x \left( 1 - 2x \right)} \text
{dx\]
\[\int\frac{x^3 + x^2 + 2x + 1}{x^2 - x + 1}\text{ dx }\]
`int 1/(sin x - sqrt3 cos x) dx`
\[\int\frac{5 \cos x + 6}{2 \cos x + \sin x + 3} \text{ dx }\]
\[\int x e^x \text{ dx }\]
\[\int x^2 \sin^{- 1} x\ dx\]
\[\int \cos^{- 1} \left( 4 x^3 - 3x \right) \text{ dx }\]
\[\int\left\{ \tan \left( \log x \right) + \sec^2 \left( \log x \right) \right\} dx\]
\[\int\left( 2x + 3 \right) \sqrt{x^2 + 4x + 3} \text{ dx }\]
\[\int(2x + 5)\sqrt{10 - 4x - 3 x^2}dx\]
\[\int\frac{5 x^2 - 1}{x \left( x - 1 \right) \left( x + 1 \right)} dx\]
\[\int\frac{x^2}{\left( x - 1 \right) \left( x + 1 \right)^2} dx\]
\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]
\[\int\frac{x^2 - 3x + 1}{x^4 + x^2 + 1} \text{ dx }\]
\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]
\[\int\frac{\sin x}{\cos 2x} \text{ dx }\]
\[\int\sqrt{\sin x} \cos^3 x\ \text{ dx }\]
\[\int\frac{1}{\sqrt{x^2 - a^2}} \text{ dx }\]
\[\int\frac{\sqrt{a} - \sqrt{x}}{1 - \sqrt{ax}}\text{ dx }\]
\[\int\frac{x \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx}\]
\[\int\frac{x^2}{x^2 + 7x + 10} dx\]