English

∫ 1 4 X 2 + 12 X + 5 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{1}{4 x^2 + 12x + 5} dx\]
Sum

Solution

\[\int\frac{dx}{4 x^2 + 12x + 5}\]
\[ = \frac{1}{4}\int\frac{dx}{x^2 + 3x + \frac{5}{4}}\]
\[ = \frac{1}{4}\int\frac{dx}{x^2 + 3x + \left( \frac{3}{2} \right)^2 - \left( \frac{3}{2} \right)^2 + \frac{5}{4}}\]
\[ = \frac{1}{4}\int\frac{dx}{\left( x + \frac{3}{2} \right)^2 - \frac{9}{4} + \frac{5}{4}}\]
\[ = \frac{1}{4}\int\frac{dx}{\left( x + \frac{3}{2} \right)^2 - 1^2}\]
\[\text{ let x} + \frac{3}{2} = t\]
\[ \Rightarrow dx = dt\]
\[Now, \frac{1}{4}\int\frac{dx}{\left( x + \frac{3}{2} \right)^2 - 1^2}\]
\[ = \frac{1}{4}\int\frac{dx}{t^2 - 1^2}\]
\[ = \frac{1}{4} \times \frac{1}{2 \times 1} \text{ log }\left| \frac{t - 1}{t + 1} \right| + C\]
\[ = \frac{1}{8} \text{ log }\left| \frac{x + \frac{3}{2} - 1}{x + \frac{3}{2} + 1} \right| + C\]
\[ = \frac{1}{8} \text{ log }\left| \frac{x + \frac{1}{2}}{x + \frac{5}{2}} \right| + C\]
\[ = \frac{1}{8} \text{ log }\left| \frac{2x + 1}{2x + 5} \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.15 [Page 86]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.15 | Q 1 | Page 86

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{\left( x + 1 \right)\left( x - 2 \right)}{\sqrt{x}} dx\]

\[\int \sin^{- 1} \left( \frac{2 \tan x}{1 + \tan^2 x} \right) dx\]

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

Write the primitive or anti-derivative of
\[f\left( x \right) = \sqrt{x} + \frac{1}{\sqrt{x}} .\]

 


\[\int\frac{x^3}{x - 2} dx\]

\[\int \sin^2 \frac{x}{2} dx\]

\[\int\left\{ 1 + \tan x \tan \left( x + \theta \right) \right\} dx\]

`  =  ∫ root (3){ cos^2 x}  sin x   dx `


\[\int\frac{\sin \left( \text{log x} \right)}{x} dx\]

\[\int 5^{5^{5^x}} 5^{5^x} 5^x dx\]

\[\int x^2 \sqrt{x + 2} \text{  dx  }\]

\[\int\frac{\cos x}{\sin^2 x + 4 \sin x + 5} dx\]

\[\int\frac{x^2}{x^6 + a^6} dx\]

\[\int\frac{\sin 2x}{\sqrt{\sin^4 x + 4 \sin^2 x - 2}} dx\]

\[\int\frac{x^2 + 1}{x^2 - 5x + 6} dx\]

\[\int\frac{x + 1}{\sqrt{4 + 5x - x^2}} \text{ dx }\]

\[\int\frac{x}{\sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int\frac{1}{3 + 2 \cos^2 x} \text{ dx }\]

\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

\[\int\frac{1}{\cos 2x + 3 \sin^2 x} dx\]

\[\int\frac{2 \sin x + 3 \cos x}{3 \sin x + 4 \cos x} dx\]

\[\int x^2 \text{ cos x dx }\]

\[\int\frac{\sin^{- 1} x}{x^2} \text{ dx }\]

\[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}} dx\]

\[\int e^x \cdot \frac{\sqrt{1 - x^2} \sin^{- 1} x + 1}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{e^x \left( x - 4 \right)}{\left( x - 2 \right)^3} \text{ dx }\]

\[\int x\sqrt{x^4 + 1} \text{ dx}\]

\[\int\sqrt{2ax - x^2} \text{ dx}\]

\[\int\frac{2x + 1}{\left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{1}{\sin x + \sin 2x} dx\]

If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\]  then k is equal to


\[\int\frac{1}{1 + \tan x} dx =\]

\[\int \text{cosec}^2 x \text{ cos}^2 \text{  2x  dx} \]

\[\int\text{ cos x  cos  2x   cos  3x  dx}\]


\[\int x\sqrt{2x + 3} \text{ dx }\]

\[\int\frac{1}{3 x^2 + 13x - 10} \text{ dx }\]

\[\int\frac{1}{\sin^4 x + \cos^4 x} \text{ dx}\]


\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int\frac{x \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx}\]

\[\int\sqrt{\frac{1 - \sqrt{x}}{1 + \sqrt{x}}} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×