English

∫ 1 3 + 2 Cos 2 X D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{1}{3 + 2 \cos^2 x} \text{ dx }\]
Sum

Solution

\[\text{ Let I } = \int \frac{1}{3 + 2 \cos^2 x}dx\]
\[\text{Dividing numerator and denominator by} \cos^2 x\]
\[ \Rightarrow I = \int \frac{\sec^2 x}{3 \sec^2 x + 2} dx\]
\[ = \int \frac{\sec^2 x}{3 \left( 1 + \tan^2 x \right) + 2}dx\]
\[ = \int \frac{\sec^2 x}{3 \tan^2 x + 5}dx\]
\[ = \int \frac{\sec^2 x}{\left( \sqrt{5} \right)^2 + \left( \sqrt{3} \tan x \right)^2}dx\]
\[\text{ Let }\sqrt{3} \tan x = t\]
\[ \Rightarrow \sqrt{3} \text{ sec}^2 x \text{ dx } = dt\]
\[ \Rightarrow \sec^2 x \text{ dx } = \frac{dt}{\sqrt{3}}\]
\[ \therefore I = \frac{1}{\sqrt{3}}\int \frac{dt}{\left( \sqrt{5} \right)^2 + t^2}\]
\[ = \frac{1}{\sqrt{3}} \times \frac{1}{\sqrt{5}} \text{ tan }^{- 1} \left( \frac{t}{\sqrt{5}} \right) + C\]
\[ = \frac{1}{\sqrt{15}} \text{ tan }^{- 1} \left( \frac{\sqrt{3} \tan x}{\sqrt{5}} \right) + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.22 [Page 114]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.22 | Q 6 | Page 114

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left( 2 - 3x \right) \left( 3 + 2x \right) \left( 1 - 2x \right) dx\]

\[\int\sqrt{x}\left( x^3 - \frac{2}{x} \right) dx\]

\[\int\left( \sec^2  x + {cosec}^2  x \right)  dx\]

\[\int\frac{\cos x}{1 + \cos x} dx\]

\[\int \left( 2x - 3 \right)^5 + \sqrt{3x + 2}  \text{dx} \]

\[\int\frac{a}{b + c e^x} dx\]

\[\int x^3 \cos x^4 dx\]

\[\int\left( \frac{x + 1}{x} \right) \left( x + \log x \right)^2 dx\]

\[\int\frac{\cos^5 x}{\sin x} dx\]

\[\int\frac{\sin\sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{\sin \left( \text{log x} \right)}{x} dx\]

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

` = ∫1/{sin^3 x cos^ 2x} dx`


\[\int\frac{1}{a^2 x^2 + b^2} dx\]

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 - 1}} dx\]

\[\int\frac{1}{\sqrt{7 - 6x - x^2}} dx\]

\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

\[\int\frac{1}{13 + 3 \cos x + 4 \sin x} dx\]

\[\int\frac{1}{1 - \tan x} \text{ dx }\]

\[\int\frac{1}{4 + 3 \tan x} dx\]

\[\int x \cos x\ dx\]

`int"x"^"n"."log"  "x"  "dx"`

\[\int x^2 \tan^{- 1} x\text{ dx }\]

\[\int\sqrt{3 - 2x - 2 x^2} \text{ dx}\]

\[\int\frac{1}{\left( x - 1 \right) \left( x + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{x^2}{\left( x - 1 \right) \sqrt{x + 2}}\text{  dx}\]

\[\int e^x \left( 1 - \cot x + \cot^2 x \right) dx =\]

The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]


\[\int\frac{x^9}{\left( 4 x^2 + 1 \right)^6}dx\]  is equal to 

\[\int \cos^3 (3x)\ dx\]

\[\int \cos^5 x\ dx\]

\[\int\frac{1}{2 + \cos x} \text{ dx }\]


\[\int\sqrt{a^2 + x^2} \text{ dx }\]

\[\int\sqrt{a^2 - x^2}\text{  dx }\]

\[\int \sin^{- 1} \sqrt{x}\ dx\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\frac{x^2}{\left( x - 1 \right)^3 \left( x + 1 \right)} \text{ dx}\]

\[\int \sin^3  \left( 2x + 1 \right)  \text{dx}\]


\[\int\frac{\cos^7 x}{\sin x} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×