English

∫ X 2 Tan − 1 X D X - Mathematics

Advertisements
Advertisements

Question

\[\int x^2 \tan^{- 1} x\text{ dx }\]
Sum

Solution

\[\text{ Let I } = \int {x^2}_{II} . \tan^{- 1}_1 \text{ x  dx }\]
\[ = \tan^{- 1} x\int x^2 dx - \int\left\{ \frac{d}{dx}\left( \tan^{- 1} x \right)\int x^2 dx \right\}\text{ dx }\]
\[ = \tan^{- 1} x \times \frac{x^3}{3} - \int \left( \frac{1}{1 + x^2} \right) \times \frac{x^3}{3} \text{ dx }\]
\[ = \tan^{- 1} x. \frac {x^3}{3} - \frac{1}{3}\int \frac{x^2 . x}{1 + x^2}dx\]

\[\text{ Let 1 }+ x^2 = t\]
\[ \Rightarrow \text{ 2x dx }= dt\]
\[ \Rightarrow \text{ x dx }= \frac{dt}{2}\]
\[ \therefore I = \tan^{- 1} x . \frac{x^3}{3} - \frac{1}{6}\int \frac{\left( t - 1 \right)}{t} . dt\]
\[ = \tan^{- 1} x . \frac{x^3}{3} - \frac{1}{6}\int dt + \frac{1}{6}\int \frac{dt}{t}\]
\[ = \tan^{- 1} x . \frac{x^3}{3} - \frac{t}{6} + \frac{1}{6}\text{ log }\left| t \right| + C\]
\[ = \tan^{- 1} x . \frac{x^3}{3} - \frac{\left( 1 + x^2 \right)}{6} + \frac{1}{6}\text{ log }\left( 1 + x^2 \right) + C\]
\[ = \tan^{- 1} x . \frac{x^3}{3} - \frac{x^2}{6} + \frac{1}{6}\text{ log }\left( 1 + x^2 \right) - \frac{1}{6} + C\]
\[ = \tan^{- 1} x . \frac{x^3}{3} - \frac{x^2}{6} + \frac{1}{6}\text{ log }\left| 1 + x^2 \right| +\text{  C' where C' = C -} \frac{1}{6}\]     
 
 
 
 
 
 
 
shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.25 [Page 134]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.25 | Q 45 | Page 134

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{1}{1 + \cos 2x} dx\]

\[\int \sin^{- 1} \left( \frac{2 \tan x}{1 + \tan^2 x} \right) dx\]

\[\int\frac{1}{\left( 7x - 5 \right)^3} + \frac{1}{\sqrt{5x - 4}} dx\]

`∫     cos ^4  2x   dx `


`  ∫  sin 4x cos  7x  dx  `

\[\int\left\{ 1 + \tan x \tan \left( x + \theta \right) \right\} dx\]

\[\int \tan^{3/2} x \sec^2 \text{x dx}\]

\[\int\frac{\cos^5 x}{\sin x} dx\]

\[\int\frac{\cos\sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int\frac{e^x}{e^{2x} + 5 e^x + 6} dx\]

\[\int\frac{x}{\sqrt{x^4 + a^4}} dx\]

\[\int\frac{\sin 2x}{\sqrt{\sin^4 x + 4 \sin^2 x - 2}} dx\]

\[\int\frac{x}{\sqrt{x^2 + 6x + 10}} \text{ dx }\]

\[\int\frac{6x - 5}{\sqrt{3 x^2 - 5x + 1}} \text{ dx }\]

\[\int\frac{x + 2}{\sqrt{x^2 - 1}} \text{ dx }\]

\[\int\frac{1}{1 + 3 \sin^2 x} \text{ dx }\]

\[\int\frac{5 \cos x + 6}{2 \cos x + \sin x + 3} \text{ dx }\]

\[\int\frac{1}{3 + 4 \cot x} dx\]

\[\int\frac{1}{4 + 3 \tan x} dx\]

\[\int x \cos x\ dx\]

\[\int\text{ log }\left( x + 1 \right) \text{ dx }\]

\[\int x^2 \text{ cos x dx }\]

\[\int x\left( \frac{\sec 2x - 1}{\sec 2x + 1} \right) dx\]

\[\int \cos^{- 1} \left( 4 x^3 - 3x \right) \text{ dx }\]

\[\int \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) \text{ dx }\]

\[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}} dx\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{ dx }\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\frac{x^4}{\left( x - 1 \right) \left( x^2 + 1 \right)} dx\]

\[\int\sin x \sin 2x \text{ sin  3x  dx }\]


\[\int\frac{x^2}{\left( x - 1 \right)^3} dx\]

\[\int \sin^5 x\ dx\]

\[\int \log_{10} x\ dx\]

\[\int x^2 \tan^{- 1} x\ dx\]

\[\int\frac{x^2}{\left( x - 1 \right)^3 \left( x + 1 \right)} \text{ dx}\]

\[\int\sqrt{\frac{1 - \sqrt{x}}{1 + \sqrt{x}}} \text{ dx}\]

\[\int\frac{\cot x + \cot^3 x}{1 + \cot^3 x} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×