English

∫ X 4 ( X − 1 ) ( X 2 + 1 ) D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{x^4}{\left( x - 1 \right) \left( x^2 + 1 \right)} dx\]
Sum

Solution

We have,
\[I = \int \frac{x^4 dx}{\left( x - 1 \right) \left( x^2 + 1 \right)}\]
\[ = \int \left[ \frac{x^4 - 1 + 1}{\left( x - 1 \right) \left( x^2 + 1 \right)} \right]dx\]
\[ = \int \frac{\left( x^4 - 1 \right)dx}{\left( x - 1 \right) \left( x^2 + 1 \right)} + \int\frac{dx}{\left( x - 1 \right) \left( x^2 + 1 \right)}\]
\[ = \int\frac{\left( x^2 - 1 \right) \left( x^2 + 1 \right) dx}{\left( x - 1 \right) \left( x^2 + 1 \right)} + \int\frac{dx}{\left( x - 1 \right) \left( x^2 + 1 \right)}\]
\[ = \int \frac{\left( x - 1 \right) \left( x + 1 \right)dx}{\left( x - 1 \right)} + \int\frac{dx}{\left( x - 1 \right) \left( x^2 + 1 \right)}\]
\[ = \int\left( x + 1 \right)dx + \int\frac{dx}{\left( x - 1 \right) \left( x^2 + 1 \right)} ................\left( 1 \right)\]
\[\text{Let }\frac{1}{\left( x - 1 \right) \left( x^2 + 1 \right)} = \frac{A}{x - 1} + \frac{Bx + C}{x^2 + 1}\]
\[ \Rightarrow \frac{1}{\left( x - 1 \right) \left( x^2 + 1 \right)} = \frac{A\left( x^2 + 1 \right) + \left( Bx + C \right) \left( x - 1 \right)}{\left( x - 1 \right) \left( x^2 + 1 \right)}\]
\[ \Rightarrow 1 = A x^2 + A + B x^2 - Bx + Cx - C\]
\[ \Rightarrow 1 = \left( A + B \right) x^2 + \left( C - B \right)x + A - C\]
\[\text{Equating coefficients of like terms}\]
\[A + B = 0 . . . . . \left( 1 \right)\]
\[C - B = 0 . . . . . \left( 2 \right)\]
\[A - C = 1 . . . . . \left( 3 \right)\]
\[\text{Solving (1), (2) and (3), we get}\]
\[B = - \frac{1}{2}, A = \frac{1}{2}, C = - \frac{1}{2}\]
\[ \therefore \frac{1}{\left( x - 1 \right) \left( x^2 + 1 \right)} = \frac{1}{2\left( x - 1 \right)} + \frac{- \frac{x}{2} - \frac{1}{2}}{x^2 + 1}\]
\[ \Rightarrow \frac{1}{\left( x - 1 \right) \left( x^2 + 1 \right)} = \frac{1}{2\left( x - 1 \right)} - \frac{1}{2}\left( \frac{x}{x^2 + 1} \right) - \frac{1}{2\left( x^2 + 1 \right)} ............. \left( 2 \right)\]
\[\text{From (1) and (2)}\]
\[I = \int\left( x + 1 \right)dx + \frac{1}{2}\int\frac{dx}{x - 1} - \frac{1}{2}\int\frac{x dx}{x^2 + 1} - \frac{1}{2}\int\frac{dx}{x^2 + 1}\]
\[\text{Putting }x^2 + 1 = t\]
\[ \Rightarrow 2x dx = dt\]
\[ \Rightarrow x dx = \frac{dt}{2}\]
\[ \therefore I = \int\left( x + 1 \right)dx + \frac{1}{2}\int\frac{dx}{x - 1} - \frac{1}{4}\int\frac{dt}{t} - \frac{1}{2}\int\frac{dx}{x^2 + 1}\]
\[ = \frac{x^2}{2} + x + \frac{1}{2}\log \left| x - 1 \right| - \frac{1}{4}\log \left| t \right| - \frac{1}{2} \tan^{- 1} x + C\]
\[ = \frac{x^2}{2} + x + \frac{1}{2}\log \left| x - 1 \right| - \frac{1}{4}\log \left| x^2 + 1 \right| - \frac{1}{2} \tan^{- 1} \left( x \right) + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.30 [Page 178]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.30 | Q 65 | Page 178

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{x^3 - 3 x^2 + 5x - 7 + x^2 a^x}{2 x^2} dx\]

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

\[\int\frac{1}{2 - 3x} + \frac{1}{\sqrt{3x - 2}} dx\]

\[\int\frac{x + 3}{\left( x + 1 \right)^4} dx\]

\[\int \sin^2 \frac{x}{2} dx\]

\[\int\frac{1}{x (3 + \log x)} dx\]

\[\int\frac{e^x + 1}{e^x + x} dx\]

\[\int\frac{\cos 4x - \cos 2x}{\sin 4x - \sin 2x} dx\]

\[\int\frac{x + 1}{x \left( x + \log x \right)} dx\]

\[\int\frac{\tan x}{\sqrt{\cos x}} dx\]

\[\int\frac{e^\sqrt{x} \cos \left( e^\sqrt{x} \right)}{\sqrt{x}} dx\]

\[\int 5^{x + \tan^{- 1} x} . \left( \frac{x^2 + 2}{x^2 + 1} \right) dx\]

\[\int\frac{\sin \left( \tan^{- 1} x \right)}{1 + x^2} dx\]

\[\int\frac{x^2}{\sqrt{3x + 4}} dx\]

\[\int\frac{1}{\sqrt{7 - 3x - 2 x^2}} dx\]

\[\int\frac{x}{\sqrt{x^4 + a^4}} dx\]

\[\int\frac{\sin 2x}{\sqrt{\sin^4 x + 4 \sin^2 x - 2}} dx\]

\[\int x e^{2x} \text{ dx }\]

\[\int\frac{\log \left( \log x \right)}{x} dx\]

\[\int \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \text{ dx }\]

\[\int e^x \sec x \left( 1 + \tan x \right) dx\]

\[\int e^x \left( \log x + \frac{1}{x} \right) dx\]

\[\int\left( x + 1 \right) \sqrt{x^2 - x + 1} \text{ dx}\]

\[\int\left( x + 1 \right) \sqrt{2 x^2 + 3} \text{ dx}\]

\[\int\frac{1}{x\left[ 6 \left( \log x \right)^2 + 7 \log x + 2 \right]} dx\]

\[\int\frac{x^2 + 1}{x^4 + 7 x^2 + 1} 2 \text{ dx }\]

\[\int\frac{1}{\left( 1 + x^2 \right) \sqrt{1 - x^2}} \text{ dx }\]

If \[\int\frac{\cos 8x + 1}{\tan 2x - \cot 2x} dx\]


\[\int\frac{\sin^6 x}{\cos^8 x} dx =\]

\[\int\frac{e^x \left( 1 + x \right)}{\cos^2 \left( x e^x \right)} dx =\]

\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]


\[\int\frac{\sin x}{\cos 2x} \text{ dx }\]

\[\int\frac{5x + 7}{\sqrt{\left( x - 5 \right) \left( x - 4 \right)}} \text{ dx }\]

\[\int\sqrt{\frac{1 - x}{x}} \text{ dx}\]


\[\int\frac{1}{a + b \tan x} \text{ dx }\]

\[\int x\sqrt{1 + x - x^2}\text{  dx }\]

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx}\]

\[\int\frac{e^{m \tan^{- 1} x}}{\left( 1 + x^2 \right)^{3/2}} \text{ dx}\]

Find :  \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\] 

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×