Advertisements
Advertisements
Question
Solution
\[\int\frac{dx}{\sqrt{7 - 3x - 2 x^2}}\]
\[ = \frac{1}{\sqrt{2}}\int\frac{dx}{\sqrt{\frac{7}{2} - \frac{3}{2}x - x^2}}\]
\[ = \frac{1}{\sqrt{2}}\int\frac{dx}{\sqrt{\frac{7}{2} - \left( x^2 - \frac{3}{2}x \right)}}\]
\[ = \frac{1}{\sqrt{2}}\int\frac{dx}{\sqrt{\left( \frac{\sqrt{7}}{\sqrt{2}} \right)^2 - \left( x^2 + \frac{3}{2}x + \left( \frac{3}{4} \right)^2 - \left( \frac{3}{4} \right)^2 \right)}}\]
\[ = \frac{1}{\sqrt{2}}\int\frac{dx}{\sqrt{\left( \frac{\sqrt{7}}{\sqrt{2}} \right)^2 - \left( x + \frac{3}{4} \right)^2 + \frac{9}{16}}}\]
\[ = \frac{1}{\sqrt{2}}\int\frac{dx}{\sqrt{\frac{7}{2} + \frac{9}{16} - \left( x + \frac{3}{4} \right)^2}}\]
\[ = \frac{1}{\sqrt{2}}\int\frac{dx}{\sqrt{\frac{56 + 9}{16} - \left( x + \frac{3}{4} \right)^2}}\]
\[ = \frac{1}{\sqrt{2}}\int\frac{dx}{\sqrt{\left( \frac{\sqrt{65}}{4} \right)^2 - \left( x + \frac{3}{4} \right)^2}}\]
\[ = \frac{1}{\sqrt{2}} \sin^{- 1} \left[ \frac{x + \frac{3}{4}}{\frac{\sqrt{65}}{4}} \right] + C\]
\[ = \frac{1}{\sqrt{2}} \sin^{- 1} \left[ \frac{4x + 3}{\sqrt{65}} \right] + C\]
APPEARS IN
RELATED QUESTIONS
\[\int\left\{ x^2 + e^{\log x}+ \left( \frac{e}{2} \right)^x \right\} dx\]
If \[\int\frac{\sin^8 x - \cos^8 x}{1 - 2 \sin^2 x \cos^2 x} dx\]
The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]
\[\int\sqrt{\frac{x}{1 - x}} dx\] is equal to