English

∫ 1 √ 7 − 3 X − 2 X 2 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{1}{\sqrt{7 - 3x - 2 x^2}} dx\]
Sum

Solution

\[\int\frac{dx}{\sqrt{7 - 3x - 2 x^2}}\]
\[ = \frac{1}{\sqrt{2}}\int\frac{dx}{\sqrt{\frac{7}{2} - \frac{3}{2}x - x^2}}\]
\[ = \frac{1}{\sqrt{2}}\int\frac{dx}{\sqrt{\frac{7}{2} - \left( x^2 - \frac{3}{2}x \right)}}\]
\[ = \frac{1}{\sqrt{2}}\int\frac{dx}{\sqrt{\left( \frac{\sqrt{7}}{\sqrt{2}} \right)^2 - \left( x^2 + \frac{3}{2}x + \left( \frac{3}{4} \right)^2 - \left( \frac{3}{4} \right)^2 \right)}}\]
\[ = \frac{1}{\sqrt{2}}\int\frac{dx}{\sqrt{\left( \frac{\sqrt{7}}{\sqrt{2}} \right)^2 - \left( x + \frac{3}{4} \right)^2 + \frac{9}{16}}}\]
\[ = \frac{1}{\sqrt{2}}\int\frac{dx}{\sqrt{\frac{7}{2} + \frac{9}{16} - \left( x + \frac{3}{4} \right)^2}}\]
\[ = \frac{1}{\sqrt{2}}\int\frac{dx}{\sqrt{\frac{56 + 9}{16} - \left( x + \frac{3}{4} \right)^2}}\]
\[ = \frac{1}{\sqrt{2}}\int\frac{dx}{\sqrt{\left( \frac{\sqrt{65}}{4} \right)^2 - \left( x + \frac{3}{4} \right)^2}}\]
\[ = \frac{1}{\sqrt{2}} \sin^{- 1} \left[ \frac{x + \frac{3}{4}}{\frac{\sqrt{65}}{4}} \right] + C\]
\[ = \frac{1}{\sqrt{2}} \sin^{- 1} \left[ \frac{4x + 3}{\sqrt{65}} \right] + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.17 [Page 93]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.17 | Q 6 | Page 93

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left\{ \sqrt{x}\left( a x^2 + bx + c \right) \right\} dx\]

\[\int\left\{ x^2 + e^{\log  x}+ \left( \frac{e}{2} \right)^x \right\} dx\]


\[\int\frac{x^6 + 1}{x^2 + 1} dx\]

\[\int\frac{\cos^2 x - \sin^2 x}{\sqrt{1} + \cos 4x} dx\]

\[\int \cot^{- 1} \left( \frac{\sin 2x}{1 - \cos 2x} \right) dx\]

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

\[\int\frac{3x + 5}{\sqrt{7x + 9}} dx\]

\[\int \cos^2 \frac{x}{2} dx\]

 


\[\int \cos^2 \text{nx dx}\]

\[\int\frac{e^x + 1}{e^x + x} dx\]

\[\int\frac{1}{      x      \text{log x } \text{log }\left( \text{log x }\right)} dx\]

\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x} dx\]

\[\int\left( \frac{x + 1}{x} \right) \left( x + \log x \right)^2 dx\]

\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} dx\]

` ∫  { x^2 dx}/{x^6 - a^6} dx `

\[\int\frac{1}{x^{2/3} \sqrt{x^{2/3} - 4}} dx\]

\[\int\frac{2x}{2 + x - x^2} \text{ dx }\]

\[\int\frac{\left( 3\sin x - 2 \right)\cos x}{13 - \cos^2 x - 7\sin x}dx\]

\[\int\frac{\cos x}{\cos 3x} \text{ dx }\]

\[\int\frac{1}{5 + 4 \cos x} dx\]

\[\int \sin^3 \sqrt{x}\ dx\]

\[\int x \cos^3 x\ dx\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} dx\]

\[\int e^x \left( \cot x + \log \sin x \right) dx\]

\[\int\frac{5x}{\left( x + 1 \right) \left( x^2 - 4 \right)} dx\]

\[\int\frac{2 x^2 + 7x - 3}{x^2 \left( 2x + 1 \right)} dx\]

\[\int\frac{1}{\sin x + \sin 2x} dx\]

If \[\int\frac{\sin^8 x - \cos^8 x}{1 - 2 \sin^2 x \cos^2 x} dx\]


The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]


\[\int\sqrt{\frac{x}{1 - x}} dx\]  is equal to


\[\int\frac{\cos2x - \cos2\theta}{\cos x - \cos\theta}dx\] is equal to 

\[\int\frac{e^x - 1}{e^x + 1} \text{ dx}\]

\[\int \cot^5 x\ dx\]

\[\int\frac{1}{\sqrt{x^2 + a^2}} \text{ dx }\]

\[\int\frac{\sqrt{a} - \sqrt{x}}{1 - \sqrt{ax}}\text{  dx }\]

\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int\sqrt{a^2 + x^2} \text{ dx }\]

\[\int \log_{10} x\ dx\]

\[\int\frac{x \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×