English

∫ X 6 + 1 X 2 + 1 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{x^6 + 1}{x^2 + 1} dx\]
Sum

Solution

\[\int \left( \frac{x^6 + 1}{x^2 + 1} \right)dx\]
\[ = \int \left[ \frac{\left( x^2 \right)^3 + 1^3}{x^2 + 1} \right]\text{dx }A^3 + B^3 = \left( A + B \right) \left( A^2 - AB + B^2 \right)\]
\[ = \int\frac{\left( x^2 + 1 \right)\left( x^4 - x^2 + 1 \right)}{\left( x^2 + 1 \right)}dx\]
\[ = \int\left( x^4 - x^2 + 1 \right)dx\]
\[ = \int x^4 dx + \int x^2 dx + \int1dx\]
\[ = \frac{x^{4 + 1}}{4 + 1} - \frac{x^{2 + 1}}{2 + 1} + x + C\]
\[ = \frac{x^5}{5} - \frac{x^3}{3} + x + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.02 [Page 14]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.02 | Q 12 | Page 14

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left\{ x^2 + e^{\log  x}+ \left( \frac{e}{2} \right)^x \right\} dx\]


\[\int\frac{\sin^2 x}{1 + \cos x}   \text{dx} \]

\[\int\frac{\cos^2 x - \sin^2 x}{\sqrt{1} + \cos 4x} dx\]

\[\int\frac{1}{1 - \sin\frac{x}{2}} dx\]

\[\int\frac{x^2 + 3x - 1}{\left( x + 1 \right)^2} dx\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

\[\int\frac{3x + 5}{\sqrt{7x + 9}} dx\]

`  =  ∫ root (3){ cos^2 x}  sin x   dx `


\[\int\frac{\cos x - \sin x}{1 + \sin 2x} dx\]

\[\int x^3 \cos x^4 dx\]

\[\int\frac{\sin\sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{\left( x + 1 \right) e^x}{\sin^2 \left( \text{x e}^x \right)} dx\]

\[\int\frac{e^{2x}}{1 + e^x} dx\]

\[\int\frac{1}{\left( x + 1 \right)\left( x^2 + 2x + 2 \right)} dx\]

\[\int\frac{x^2}{\sqrt{1 - x}} dx\]

\[\int \sin^3 x \cos^5 x \text{ dx  }\]

Evaluate the following integrals:

\[\int\cos\left\{ 2 \cot^{- 1} \sqrt{\frac{1 + x}{1 - x}} \right\}dx\]

\[\int\frac{1}{a^2 - b^2 x^2} dx\]

\[\int\frac{1}{4 x^2 + 12x + 5} dx\]

\[\int\frac{1}{1 + x - x^2}  \text{ dx }\]

\[\int\frac{x - 1}{\sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{2x + 5}{\sqrt{x^2 + 2x + 5}} dx\]

\[\int\frac{2}{2 + \sin 2x}\text{ dx }\]

\[\int\frac{1}{5 + 4 \cos x} dx\]

`int 1/(cos x - sin x)dx`

\[\int x e^x \text{ dx }\]

\[\int x^2 \text{ cos x dx }\]

\[\int\left( e^\text{log  x} + \sin x \right) \text{ cos x dx }\]


\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} dx\]

\[\int e^x \left( \log x + \frac{1}{x^2} \right) dx\]

\[\int\frac{2x - 3}{\left( x^2 - 1 \right) \left( 2x + 3 \right)} dx\]

\[\int\frac{\sin 2x}{\left( 1 + \sin x \right) \left( 2 + \sin x \right)} dx\]

\[\int\frac{1}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)} dx\]

\[\int\frac{x^2 + 9}{x^4 + 81} \text{ dx }\]

 


\[\int\frac{1}{\left( 2 x^2 + 3 \right) \sqrt{x^2 - 4}} \text{ dx }\]

If \[\int\frac{\cos 8x + 1}{\tan 2x - \cot 2x} dx\]


\[\int\frac{\sin x + \cos x}{\sqrt{\sin 2x}} \text{ dx}\]

\[\int\frac{x^2}{\left( x - 1 \right)^3} dx\]

\[\int\frac{\sin^2 x}{\cos^6 x} \text{ dx }\]

\[\int\frac{x^2 - 2}{x^5 - x} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×