Advertisements
Advertisements
Question
\[\int x^3 \cos x^4 dx\]
Sum
Solution
\[\int x^3 \cdot \cos \left( x^4 \right) dx\]
\[\text{Let x}^4 = t\]
\[ \Rightarrow 4 x^3 dx = dt\]
\[ \Rightarrow x^3 dx = \frac{dt}{4}\]
\[Now, \int x^3 \cdot \cos \left( x^4 \right) dx\]
\[ = \frac{1}{4}\int\cos \left( t \right) dt\]
\[ = \frac{1}{4}\left[ \text{sin} \left( t \right) \right] + C\]
\[ = \frac{1}{4}\left[ \text{sin x}^4 \right] + C\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\frac{1}{1 - \cos 2x} dx\]
\[\int \left( a \tan x + b \cot x \right)^2 dx\]
\[\int\frac{\cos x}{1 + \cos x} dx\]
\[\int \left( 2x - 3 \right)^5 + \sqrt{3x + 2} \text{dx} \]
\[\int\frac{1}{\sqrt{x + 1} + \sqrt{x}} dx\]
\[\int \tan^2 \left( 2x - 3 \right) dx\]
\[\int\frac{x}{\sqrt{x + a} - \sqrt{x + b}}dx\]
\[\int \text{sin}^2 \left( 2x + 5 \right) \text{dx}\]
\[\int\frac{\sin 2x}{\sin 5x \sin 3x} dx\]
\[\int\left( \frac{x + 1}{x} \right) \left( x + \log x \right)^2 dx\]
\[\int \sin^3 x \cos^5 x \text{ dx }\]
` = ∫1/{sin^3 x cos^ 2x} dx`
\[\int\frac{1}{4 x^2 + 12x + 5} dx\]
\[\int\frac{2x + 5}{x^2 - x - 2} \text{ dx }\]
\[\int\frac{x^3}{x^4 + x^2 + 1}dx\]
\[\int\frac{x - 1}{\sqrt{x^2 + 1}} \text{ dx }\]
\[\int\frac{x}{\sqrt{x^2 + x + 1}} \text{ dx }\]
\[\int\frac{x + 1}{\sqrt{x^2 + 1}} dx\]
\[\int\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]
\[\int\frac{1}{4 \sin^2 x + 5 \cos^2 x} \text{ dx }\]
\[\int\frac{1}{3 + 2 \sin x + \cos x} \text{ dx }\]
\[\int\frac{1}{5 + 7 \cos x + \sin x} dx\]
\[\int {cosec}^3 x\ dx\]
\[\int\frac{x^3 \sin^{- 1} x^2}{\sqrt{1 - x^4}} \text{ dx }\]
\[\int\left( 4x + 1 \right) \sqrt{x^2 - x - 2} \text{ dx }\]
\[\int\frac{1}{x\left( x - 2 \right) \left( x - 4 \right)} dx\]
\[\int\frac{x^2 + 1}{x\left( x^2 - 1 \right)} dx\]
\[\int\frac{x}{\left( x^2 - a^2 \right) \left( x^2 - b^2 \right)} dx\]
\[\int\frac{3}{\left( 1 - x \right) \left( 1 + x^2 \right)} dx\]
\[\int\frac{4 x^4 + 3}{\left( x^2 + 2 \right) \left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]
\[\int\frac{\left( x - 1 \right)^2}{x^4 + x^2 + 1} \text{ dx}\]
\[\int\frac{\sin x}{1 + \sin x} \text{ dx }\]
\[\int \cot^4 x\ dx\]
\[\int\frac{1}{\sqrt{x^2 - a^2}} \text{ dx }\]
\[\int\sqrt{\frac{1 - x}{x}} \text{ dx}\]
\[\int\frac{\sin x + \cos x}{\sin^4 x + \cos^4 x} \text{ dx }\]
\[\int \sin^{- 1} \sqrt{x}\ dx\]
\[\int \sec^{- 1} \sqrt{x}\ dx\]
\[\int \sin^3 \left( 2x + 1 \right) \text{dx}\]
\[\int\frac{x^2}{x^2 + 7x + 10}\text{ dx }\]