Advertisements
Advertisements
Question
\[\int\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]
Sum
Solution
\[\text{ Let I }= \int\sqrt{\frac{1 - x}{1 + x}} dx\]
\[ = \int\sqrt{\frac{\left( 1 - x \right)\left( 1 - x \right)}{\left( 1 + x \right)\left( 1 - x \right)}} dx\]
\[ = \int\left( \frac{1 - x}{\sqrt{1 - x^2}} \right) dx\]
\[ = \int\frac{dx}{\sqrt{1 - x^2}} - \int\frac{x dx}{\sqrt{1 - x^2}}\]
\[\text{ Putting }1 - x^2 = t\]
\[ \Rightarrow \text{ - 2x dx } = dt\]
\[ \Rightarrow \text{ x dx }= - \frac{dt}{2}\]
\[\text{ Then, } \]
\[I = \int\frac{dx}{\sqrt{1 - x^2}} + \frac{1}{2}\int\frac{dt}{\sqrt{t}}\]
\[ = \sin^{- 1} \left( x \right) + \frac{1}{2} \times 2\sqrt{t} + C\]
\[ = \sin^{- 1} \left( x \right) + \sqrt{1 - x^2} + C\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\sqrt{x}\left( x^3 - \frac{2}{x} \right) dx\]
\[\int\frac{1 - \cos 2x}{1 + \cos 2x} dx\]
\[\int\frac{\tan x}{\sec x + \tan x} dx\]
Write the primitive or anti-derivative of
\[f\left( x \right) = \sqrt{x} + \frac{1}{\sqrt{x}} .\]
\[\int\frac{1 + \cos 4x}{\cot x - \tan x} dx\]
\[\int\frac{x^2 + 5x + 2}{x + 2} dx\]
\[\int\frac{x + 1}{\sqrt{2x + 3}} dx\]
\[\int\frac{3x + 5}{\sqrt{7x + 9}} dx\]
\[\int\frac{\sin 2x}{\sin 5x \sin 3x} dx\]
\[\int\frac{1}{1 + \sqrt{x}} dx\]
\[\int\frac{\left( x + 1 \right) e^x}{\cos^2 \left( x e^x \right)} dx\]
\[\int\frac{1}{\sqrt{x} + x} \text{ dx }\]
` ∫ tan^5 x dx `
\[\int \cot^5 x \text{ dx }\]
` = ∫1/{sin^3 x cos^ 2x} dx`
\[\int\frac{1}{a^2 x^2 + b^2} dx\]
\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 + 1}} dx\]
\[\int\frac{1}{\sqrt{7 - 3x - 2 x^2}} dx\]
\[\int\frac{e^x}{\sqrt{16 - e^{2x}}} dx\]
\[\int\frac{\sin 2x}{\sqrt{\cos^4 x - \sin^2 x + 2}} dx\]
\[\int\frac{x}{x^2 + 3x + 2} dx\]
\[\int\frac{x + 2}{2 x^2 + 6x + 5}\text{ dx }\]
\[\int\frac{\left( 3\sin x - 2 \right)\cos x}{13 - \cos^2 x - 7\sin x}dx\]
\[\int\frac{x^3 + x^2 + 2x + 1}{x^2 - x + 1}\text{ dx }\]
\[\int\frac{1}{\cos 2x + 3 \sin^2 x} dx\]
\[\int\frac{8 \cot x + 1}{3 \cot x + 2} \text{ dx }\]
\[\int\left( x + 1 \right) \text{ e}^x \text{ log } \left( x e^x \right) dx\]
\[\int\frac{x^2 \tan^{- 1} x}{1 + x^2} \text{ dx }\]
\[\int\left( x + 2 \right) \sqrt{x^2 + x + 1} \text{ dx }\]
\[\int\frac{1}{\cos x \left( 5 - 4 \sin x \right)} dx\]
\[\int\frac{x + 1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]
\[\int\frac{1}{\left( x^2 + 1 \right) \sqrt{x}} \text{ dx }\]
\[\int\frac{x}{4 + x^4} \text{ dx }\] is equal to
\[\int\frac{1}{\left( \sin^{- 1} x \right) \sqrt{1 - x^2}} \text{ dx} \]
\[\int\frac{1}{1 - x - 4 x^2}\text{ dx }\]
\[\int \tan^{- 1} \sqrt{x}\ dx\]
\[\int\frac{\sin 4x - 2}{1 - \cos 4x} e^{2x} \text{ dx}\]
\[\int\frac{\cos^7 x}{\sin x} dx\]
Find: `int (3x +5)/(x^2+3x-18)dx.`