English

∫ Sin 2 X √ Cos 4 X − Sin 2 X + 2 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{\sin 2x}{\sqrt{\cos^4 x - \sin^2 x + 2}} dx\]
Sum

Solution

\[\int\frac{\text{ sin }\left( 2 x \right) dx}{\sqrt{\cos^4 x - \sin^2 x + 2}}\]
` ⇒ ∫ {2 sin x cos x  dx}/{\sqrt{cos^4 x - \left( 1 - \cos^2 x \right) + 2}}`
\[ \Rightarrow \int\frac{2 \sin x \cos x}{\sqrt{\cos^4 x + \cos^2 x + 1}}\]
\[\text{ Let } \cos^2 x = t\]
\[ \Rightarrow 2 \cos x \times - \text{ sin x dx } = dt\]
\[\text{ sin } \left( 2x \right) dx = - dt\]
\[Now, \int\frac{\sin \left( 2 x \right) dx}{\sqrt{\cos^4 x - \sin^2 x + 2}}\]
\[ = \int\frac{- dt}{\sqrt{t^2 + t + 1}}\]
\[ = \int\frac{- dt}{\sqrt{t^2 + t + \left( \frac{1}{2} \right)^2 - \left( \frac{1}{2} \right)^2 + 1}}\]
\[ = - \int\frac{dt}{\sqrt{\left( t + \frac{1}{2} \right)^2 + \frac{3}{4}}}\]
\[ = - \int\frac{dt}{\sqrt{\left( t + \frac{1}{2} \right)^2 + \left( \frac{\sqrt{3}}{2} \right)^2}}\]
\[ = - \text{ log }\left| t + \frac{1}{2} + \sqrt{\left( t + \frac{1}{2} \right)^2 + \left( \frac{\sqrt{3}}{2} \right)^2} \right| + C\]
\[ = - \text{ log }\left| t + \frac{1}{2} + \sqrt{t^2 + t + 1} \right| + C\]
\[ = - \text{ log }\left| \cos^2 x + \frac{1}{2} + \sqrt{\cos^4 x + \cos^2 x + 1} \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.18 [Page 99]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.18 | Q 11 | Page 99

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left( x^e + e^x + e^e \right) dx\]

\[\int\frac{\left( x + 1 \right)\left( x - 2 \right)}{\sqrt{x}} dx\]

\[\int\frac{\cos x}{1 + \cos x} dx\]

If f' (x) = x − \[\frac{1}{x^2}\]  and  f (1)  \[\frac{1}{2},    find  f(x)\]

 


\[\int\frac{x^3}{x - 2} dx\]

\[\int\frac{2x + 1}{\sqrt{3x + 2}} dx\]

\[\int\frac{e^{3x}}{e^{3x} + 1} dx\]

\[\int\frac{1}{1 + \sqrt{x}} dx\]

\[\int\frac{e^{m \tan^{- 1} x}}{1 + x^2} dx\]

 ` ∫   1 /{x^{1/3} ( x^{1/3} -1)}   ` dx


\[\int {cosec}^4  \text{ 3x } \text{ dx } \]

\[\int \sin^5 x \cos x \text{ dx }\]

\[\int \cos^7 x \text{ dx  } \]

\[\int\frac{1}{\sqrt{1 + 4 x^2}} dx\]

 


\[\int\frac{1}{\sqrt{7 - 6x - x^2}} dx\]

\[\int\frac{2x}{2 + x - x^2} \text{ dx }\]

\[\int\frac{2x + 5}{x^2 - x - 2} \text{ dx }\]

\[\int\frac{x + 2}{2 x^2 + 6x + 5}\text{  dx }\]

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 4x + 3}} \text{ dx }\]

\[\int\frac{1}{\sqrt{3} \sin x + \cos x} dx\]

\[\int\frac{2 \sin x + 3 \cos x}{3 \sin x + 4 \cos x} dx\]

\[\int\frac{\sin^{- 1} x}{x^2} \text{ dx }\]

\[\int e^x \left( \cot x + \log \sin x \right) dx\]

\[\int\frac{1}{x\left[ 6 \left( \log x \right)^2 + 7 \log x + 2 \right]} dx\]

\[\int\frac{1}{x \left( x^4 + 1 \right)} dx\]

\[\int\frac{x^2 - 1}{x^4 + 1} \text{ dx }\]

\[\int\frac{x^2 + 1}{x^4 + 7 x^2 + 1} 2 \text{ dx }\]

\[\int\frac{1}{\cos x + \sqrt{3} \sin x} \text{ dx } \] is equal to

\[\int\frac{\sin x}{3 + 4 \cos^2 x} dx\]

\[\int\frac{\cos2x - \cos2\theta}{\cos x - \cos\theta}dx\] is equal to 

\[\int\frac{\sin x}{\sqrt{1 + \sin x}} dx\]

\[\int x \sin^5 x^2 \cos x^2 dx\]

\[\int\frac{x + 1}{x^2 + 4x + 5} \text{  dx}\]

\[\int\frac{1}{\sec x + cosec x}\text{  dx }\]

\[\int\frac{\log x}{x^3} \text{ dx }\]

\[\int\frac{\log \left( 1 - x \right)}{x^2} \text{ dx}\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\frac{x^2 - 2}{x^5 - x} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×