Advertisements
Advertisements
Question
Solution
\[\text{We have}, \]
\[I = \int\frac{1}{\sec x + \text{ cosec x}} \text{ dx}\]
\[I = \int\frac{1}{\frac{1}{\cos x} + \frac{1}{\sin x}} \text{ dx}\]
\[I = \frac{1}{2}\int\frac{2\sin x \cos x}{\sin x + \cos x} \text{ dx}\]
\[I = \frac{1}{2}\int\frac{1 + 2\sin x \cos x - 1}{\sin x + \cos x} \text{ dx}\]
\[I = \frac{1}{2}\int\frac{\sin^2 x + \cos^2 x + 2\sin x \cos x - 1}{\sin x + \cos x} \text{ dx}\]
\[I = \frac{1}{2}\int\frac{\left( \sin x + \cos x \right)^2 - 1}{\sin x + \cos x} \text{ dx}\]
\[I = \frac{1}{2}\int\frac{\left( \sin x + \cos x \right)^2}{\sin x + \cos x} \text{ dx} - \frac{1}{2}\int\frac{1}{\sin x + \cos x} \text{ dx}\]
\[I = \frac{1}{2}\int\left( \sin x + \cos x \right) \text{ dx}- \frac{1}{2}\int\frac{1}{\sin x + \cos x} \text{ dx}\]
\[I = \frac{1}{2}\left( - \cos x + \sin x \right) + C_1 - \frac{1}{2\sqrt{2}}\int\frac{1}{\frac{1}{\sqrt{2}}\left( \sin x + \cos x \right)} \text{ dx}\]
\[I = \frac{1}{2}\left( - \cos x + \sin x \right) + C_1 - \frac{1}{2\sqrt{2}}\int\frac{1}{\sin x \cos\frac{\pi}{4} + \cos x \sin\frac{\pi}{4}} \text{ dx}\]
\[I = \frac{1}{2}\left( - \cos x + \sin x \right) + C_1 - \frac{1}{2\sqrt{2}}\int\frac{1}{\sin\left( x + \frac{\pi}{4} \right)} \text{ dx}\]
\[I = \frac{1}{2}\left( - \cos x + \sin x \right) + C_1 - \frac{1}{2\sqrt{2}}\int cosec\left( x + \frac{\pi}{4} \right) \text{ dx}\]
\[I = \frac{1}{2}\left( - \cos x + \sin x \right) - \frac{1}{2\sqrt{2}}\text{ log}\left| \tan\left( \frac{x}{2} + \frac{\pi}{8} \right) \right| + C\]
APPEARS IN
RELATED QUESTIONS
` ∫ 1/ {1+ cos 3x} ` dx
` ∫ {sin 2x} /{a cos^2 x + b sin^2 x } ` dx
` = ∫1/{sin^3 x cos^ 2x} dx`
\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then
\[\int\frac{1}{\sqrt{x} + \sqrt{x + 1}} \text{ dx }\]
\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]