English

∫ 1 Sec X + C O S E C X Dx - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{1}{\sec x + cosec x}\text{  dx }\]
Sum

Solution

\[\text{We have}, \]
\[I = \int\frac{1}{\sec x + \text{ cosec x}} \text{ dx}\]
\[I = \int\frac{1}{\frac{1}{\cos x} + \frac{1}{\sin x}} \text{ dx}\]
\[I = \frac{1}{2}\int\frac{2\sin x \cos x}{\sin x + \cos x} \text{ dx}\]
\[I = \frac{1}{2}\int\frac{1 + 2\sin x \cos x - 1}{\sin x + \cos x} \text{ dx}\]
\[I = \frac{1}{2}\int\frac{\sin^2 x + \cos^2 x + 2\sin x \cos x - 1}{\sin x + \cos x} \text{ dx}\]
\[I = \frac{1}{2}\int\frac{\left( \sin x + \cos x \right)^2 - 1}{\sin x + \cos x} \text{ dx}\]
\[I = \frac{1}{2}\int\frac{\left( \sin x + \cos x \right)^2}{\sin x + \cos x} \text{ dx} - \frac{1}{2}\int\frac{1}{\sin x + \cos x} \text{ dx}\]
\[I = \frac{1}{2}\int\left( \sin x + \cos x \right) \text{ dx}- \frac{1}{2}\int\frac{1}{\sin x + \cos x} \text{ dx}\]
\[I = \frac{1}{2}\left( - \cos x + \sin x \right) + C_1 - \frac{1}{2\sqrt{2}}\int\frac{1}{\frac{1}{\sqrt{2}}\left( \sin x + \cos x \right)} \text{ dx}\]
\[I = \frac{1}{2}\left( - \cos x + \sin x \right) + C_1 - \frac{1}{2\sqrt{2}}\int\frac{1}{\sin x \cos\frac{\pi}{4} + \cos x \sin\frac{\pi}{4}} \text{ dx}\]
\[I = \frac{1}{2}\left( - \cos x + \sin x \right) + C_1 - \frac{1}{2\sqrt{2}}\int\frac{1}{\sin\left( x + \frac{\pi}{4} \right)} \text{ dx}\]
\[I = \frac{1}{2}\left( - \cos x + \sin x \right) + C_1 - \frac{1}{2\sqrt{2}}\int cosec\left( x + \frac{\pi}{4} \right) \text{ dx}\]
\[I = \frac{1}{2}\left( - \cos x + \sin x \right) - \frac{1}{2\sqrt{2}}\text{ log}\left| \tan\left( \frac{x}{2} + \frac{\pi}{8} \right) \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Revision Excercise [Page 204]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Revision Excercise | Q 83 | Page 204

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{1}{1 + \cos 2x} dx\]

` ∫  1/ {1+ cos   3x}  ` dx


\[\int\frac{x^2 + x + 5}{3x + 2} dx\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

\[\int\frac{3x + 5}{\sqrt{7x + 9}} dx\]

` ∫  {sin 2x} /{a cos^2  x  + b sin^2  x }  ` dx 


\[\int\frac{\tan x}{\sqrt{\cos x}} dx\]

\[\int 5^{x + \tan^{- 1} x} . \left( \frac{x^2 + 2}{x^2 + 1} \right) dx\]

\[\int\frac{x}{\sqrt{x^2 + a^2} + \sqrt{x^2 - a^2}} dx\]

\[\int\frac{\text{sin }\left( \text{2 + 3 log x }\right)}{x} dx\]

\[\int\frac{e^{2x}}{1 + e^x} dx\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} dx\]

\[\int\frac{1}{\sin^4 x \cos^2 x} dx\]

` = ∫1/{sin^3 x cos^ 2x} dx`


\[\int\frac{e^x}{1 + e^{2x}} dx\]

\[\int\frac{x}{x^4 - x^2 + 1} dx\]

\[\int\frac{1}{\sqrt{3 x^2 + 5x + 7}} dx\]

\[\int\frac{x}{x^2 + 3x + 2} dx\]

\[\int\frac{x + 1}{\sqrt{4 + 5x - x^2}} \text{ dx }\]

\[\int\frac{x + 1}{\sqrt{x^2 + 1}} dx\]

\[\int\frac{1}{4 \cos x - 1} \text{ dx }\]

\[\int\text{ log }\left( x + 1 \right) \text{ dx }\]

\[\int x e^x \text{ dx }\]

\[\int x^3 \cos x^2 dx\]

\[\int\frac{x^2 \tan^{- 1} x}{1 + x^2} \text{ dx }\]

\[\int x^2 \tan^{- 1} x\text{ dx }\]

\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

∴\[\int e^{2x} \left( - \sin x + 2 \cos x \right) dx\]

\[\int\frac{1}{x \log x \left( 2 + \log x \right)} dx\]

\[\int\frac{1}{\left( x - 1 \right) \left( x + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{x^4}{\left( x - 1 \right) \left( x^2 + 1 \right)} dx\]

\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then 


\[\int\frac{1}{\sqrt{x} + \sqrt{x + 1}}  \text{ dx }\]


\[\int \cot^5 x\ dx\]

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int \tan^{- 1} \sqrt{x}\ dx\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} \text{ dx}\]

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×