Advertisements
Advertisements
Question
\[\int 5^{x + \tan^{- 1} x} . \left( \frac{x^2 + 2}{x^2 + 1} \right) dx\]
Sum
Solution
\[\int 5^{x + \tan^{- 1} x} \cdot \left( \frac{x^2 + 2}{x^2 + 1} \right)dx\]
\[\text{Let x} + \tan^{- 1} x = t\]
\[\left( 1 + \frac{1}{1 + x^2} \right) = \frac{dt}{dx}\]
\[ \Rightarrow \left( \frac{x^2 + 1 + 1}{x^2 + 1} \right)dx = dt\]
\[ \Rightarrow \left( \frac{x^2 + 2}{x^2 + 1} \right)dx = dt\]
\[Now, \int 5^{x + \tan^{- 1} x} \cdot \left( \frac{x^2 + 2}{x^2 + 1} \right)dx\]
\[ = \int 5^t dt\]
\[ = \frac{5^t}{\log 5} + C\]
\[ = \frac{5^{x + \tan^1 x}}{\log 5} + C\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\frac{5 \cos^3 x + 6 \sin^3 x}{2 \sin^2 x \cos^2 x} dx\]
` ∫ {cosec x} / {"cosec x "- cot x} ` dx
\[\int \sin^{- 1} \left( \frac{2 \tan x}{1 + \tan^2 x} \right) dx\]
\[\int\frac{1 + \cos x}{1 - \cos x} dx\]
` ∫ sin 4x cos 7x dx `
\[\int\frac{x^5}{\sqrt{1 + x^3}} dx\]
\[\int \cot^5 \text{ x } {cosec}^4 x\text{ dx }\]
\[\int\frac{1}{4 x^2 + 12x + 5} dx\]
\[\int\frac{1}{\sqrt{\left( x - \alpha \right)\left( \beta - x \right)}} dx, \left( \beta > \alpha \right)\]
\[\int\frac{1}{\sqrt{7 - 6x - x^2}} dx\]
\[\int\frac{\cos x}{\sqrt{\sin^2 x - 2 \sin x - 3}} dx\]
\[\int\frac{\left( 3 \sin x - 2 \right) \cos x}{5 - \cos^2 x - 4 \sin x} dx\]
\[\int\frac{x + 2}{\sqrt{x^2 + 2x - 1}} \text{ dx }\]
\[\int\frac{1}{5 + 4 \cos x} dx\]
\[\int\frac{1}{\sqrt{3} \sin x + \cos x} dx\]
\[\int\frac{1}{1 - \cot x} dx\]
\[\int\frac{4 \sin x + 5 \cos x}{5 \sin x + 4 \cos x} \text{ dx }\]
\[\int x^2 \cos 2x\ \text{ dx }\]
\[\int \sin^{- 1} \sqrt{x} \text{ dx }\]
\[\int \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]
\[\int \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) \text{ dx }\]
\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{ dx }\]
\[\int\left( x + 1 \right) \sqrt{2 x^2 + 3} \text{ dx}\]
\[\int\left( 4x + 1 \right) \sqrt{x^2 - x - 2} \text{ dx }\]
\[\int\frac{x^2 + 1}{\left( 2x + 1 \right) \left( x^2 - 1 \right)} dx\]
\[\int\frac{x}{\left( x - 1 \right)^2 \left( x + 2 \right)} dx\]
\[\int\frac{1}{\left( x - 1 \right) \sqrt{2x + 3}} \text{ dx }\]
\[\int\frac{x + 1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]
\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 1}} \text{ dx }\]
Write a value of
\[\int e^{3 \text{ log x}} x^4\text{ dx}\]
If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\] then k is equal to
\[\int\frac{1}{e^x + 1} \text{ dx }\]
\[\int\frac{1}{x^2 + 4x - 5} \text{ dx }\]
\[\int\sqrt{\text{ cosec x} - 1} \text{ dx }\]
\[\int\frac{x + 1}{x^2 + 4x + 5} \text{ dx}\]
\[\int\frac{1}{2 - 3 \cos 2x} \text{ dx }\]
\[\int\frac{\sin x + \cos x}{\sin^4 x + \cos^4 x} \text{ dx }\]
\[\int \cos^{- 1} \left( 1 - 2 x^2 \right) \text{ dx }\]
\[\int\frac{\cos^7 x}{\sin x} dx\]