English

∫ Cos − 1 ( 1 − 2 X 2 ) Dx - Mathematics

Advertisements
Advertisements

Question

\[\int \cos^{- 1} \left( 1 - 2 x^2 \right) \text{ dx }\]
Sum

Solution

\[\text{We have}, \]

\[I = \int \cos^{- 1} \left( 1 - 2 x^2 \right)dx\]

\[\text{ Putting x }= \sin \theta\]

\[ \Rightarrow dx = \cos \text{ θ   dθ}\]

\[ \therefore I = \int \cos^{- 1} \left( 1 - 2 \sin^2 \theta \right) \cos \text{ θ   dθ}\]

\[ = \int \cos^{- 1} \left( \cos 2\theta \right) \cos \text{ θ   dθ}\]

\[ = 2\int \theta_I \text {cos}_{II} \text{ θ   dθ}\]

\[ = 2\left[ \theta \sin \theta - \int1 \sin \text{ θ   dθ}\right]\]

\[ = 2\left[ \theta \sin \theta + \cos \theta \right] + C\]

\[ = 2\left[ \sin^{- 1} x \times x + \sqrt{1 - x^2} \right] + C\]

\[ = 2\left[ x \sin^{- 1} x + \sqrt{1 - x^2} \right] + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Revision Excercise [Page 204]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Revision Excercise | Q 116 | Page 204

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left\{ \sqrt{x}\left( a x^2 + bx + c \right) \right\} dx\]

If f' (x) = x − \[\frac{1}{x^2}\]  and  f (1)  \[\frac{1}{2},    find  f(x)\]

 


\[\int\frac{1}{\text{cos}^2\text{ x }\left( 1 - \text{tan x} \right)^2} dx\]

\[\int\frac{2x + 3}{\left( x - 1 \right)^2} dx\]

\[\int\frac{x^2 + 3x - 1}{\left( x + 1 \right)^2} dx\]

\[\int\left( x + 2 \right) \sqrt{3x + 5}  \text{dx} \]

\[\int\frac{\text{sin} \left( x - a \right)}{\text{sin}\left( x - b \right)} dx\]

` ∫  tan 2x tan 3x  tan 5x    dx  `

\[\int\frac{\sin 2x}{\left( a + b \cos 2x \right)^2} dx\]

\[\int x^3 \sin x^4 dx\]

\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} dx\]

\[\int \sec^4 2x \text{ dx }\]

\[\int \cot^5 x  \text{ dx }\]

Evaluate the following integrals:
\[\int\frac{x^2}{\left( a^2 - x^2 \right)^{3/2}}dx\]

\[\int\frac{x^2 - 1}{x^2 + 4} dx\]

\[\int\frac{e^x}{1 + e^{2x}} dx\]

\[\int\frac{\sin 8x}{\sqrt{9 + \sin^4 4x}} dx\]

\[\int\frac{2x + 5}{x^2 - x - 2} \text{ dx }\]

\[\int\frac{\cos x}{\cos 3x} \text{ dx }\]

\[\int\frac{1}{1 + 3 \sin^2 x} \text{ dx }\]

\[\int\text{ log }\left( x + 1 \right) \text{ dx }\]

\[\int2 x^3 e^{x^2} dx\]

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx }\]

\[\int\sqrt{3 - 2x - 2 x^2} \text{ dx}\]

\[\int\frac{x^3}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{x^2 + 1}{x^4 + x^2 + 1} \text{  dx }\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int\frac{1}{\left( 2 x^2 + 3 \right) \sqrt{x^2 - 4}} \text{ dx }\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 9}} \text{ dx}\]

If \[\int\frac{\sin^8 x - \cos^8 x}{1 - 2 \sin^2 x \cos^2 x} dx\]


\[\int x \sin^5 x^2 \cos x^2 dx\]

\[\int \cos^5 x\ dx\]

\[\int\frac{\sin x}{\sqrt{\cos^2 x - 2 \cos x - 3}} \text{ dx }\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right) \left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int\frac{\sin x + \cos x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int \left( \sin^{- 1} x \right)^3 dx\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\frac{\cot x + \cot^3 x}{1 + \cot^3 x} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×