Advertisements
Advertisements
Question
If f' (x) = x − \[\frac{1}{x^2}\] and f (1) \[\frac{1}{2}, find f(x)\]
Solution
\[f'\left( x \right) = x - \frac{1}{x^2}\]
\[ f'\left( x \right) = x - x^{- 2} \]
\[\int f'\left( x \right)dx = \int\left( x - x^{- 2} \right)dx\]
\[ f\left( x \right) = \frac{x^2}{2} - \frac{x^{- 2 + 1}}{- 2 + 1} + C\]
\[ = \frac{x^2}{2} + \frac{1}{x} + C\]
\[f\left( 1 \right) = \frac{1}{2} \left( Given \right)\]
\[ \Rightarrow \frac{1^2}{2} + \frac{1}{1} + C = \frac{1}{2}\]
\[ \Rightarrow C = - 1\]
\[ \therefore f\left( x \right) = \frac{x^2}{2} + \frac{1}{x} - 1\]
APPEARS IN
RELATED QUESTIONS
If f' (x) = 8x3 − 2x, f(2) = 8, find f(x)
` ∫ e^{m sin ^-1 x}/ \sqrt{1-x^2} ` dx
Evaluate the following integrals:
The value of \[\int\frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx\] is equal to
\[ \int\left( 1 + x^2 \right) \ \cos 2x \ dx\]
\[\int\frac{5 x^4 + 12 x^3 + 7 x^2}{x^2 + x} dx\]
\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]
Find: `int (3x +5)/(x^2+3x-18)dx.`