Advertisements
Advertisements
Question
\[\int\frac{1 - \sin 2x}{x + \cos^2 x} dx\]
Sum
Solution
\[\text{Let I} = \int\frac{1 - \sin2x}{x + \cos^2 x}dx\]
\[\text{Putting}\ x + \cos^2 x = t\]
\[ \Rightarrow 1 - 2\ cosx . \ sinx = \frac{dt}{dx}\]
\[ \Rightarrow \left( 1 - \sin 2x \right)dx = dt\]
\[ \therefore I = \int\frac{1}{t}dt\]
\[ = \text{ln} \left| t \right| + C\]
\[ = \text{ln }\left| x + \cos^2 x \right| + C \left[ \because t = x + \cos^2 x \right]\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\frac{\left( x + 1 \right)\left( x - 2 \right)}{\sqrt{x}} dx\]
\[\int\frac{x^5 + x^{- 2} + 2}{x^2} dx\]
\[\int \cot^{- 1} \left( \frac{\sin 2x}{1 - \cos 2x} \right) dx\]
\[\int \left( a \tan x + b \cot x \right)^2 dx\]
\[\int \left( e^x + 1 \right)^2 e^x dx\]
\[\int\frac{1}{\sqrt{x + 3} - \sqrt{x + 2}} dx\]
\[\int\frac{x^2 + 3x - 1}{\left( x + 1 \right)^2} dx\]
\[\int\frac{\sec x \tan x}{3 \sec x + 5} dx\]
\[\int\frac{e^\sqrt{x} \cos \left( e^\sqrt{x} \right)}{\sqrt{x}} dx\]
\[\int\frac{x + \sqrt{x + 1}}{x + 2} dx\]
\[\int\frac{x^5}{\sqrt{1 + x^3}} dx\]
\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]
\[\int\frac{1}{\sin^4 x \cos^2 x} dx\]
` = ∫1/{sin^3 x cos^ 2x} dx`
\[\int\frac{1}{x^2 + 6x + 13} dx\]
\[\int\frac{e^{3x}}{4 e^{6x} - 9} dx\]
\[\int\frac{1}{5 + 4 \cos x} dx\]
\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]
\[\int\frac{1}{1 - \cot x} dx\]
\[\int x \text{ sin 2x dx }\]
\[\int x \sin x \cos x\ dx\]
` ∫ sin x log (\text{ cos x ) } dx `
\[\int\cos\sqrt{x}\ dx\]
\[\int \sin^{- 1} \sqrt{x} \text{ dx }\]
\[\int x \cos^3 x\ dx\]
\[\int\left( x - 2 \right) \sqrt{2 x^2 - 6x + 5} \text{ dx }\]
\[\int\frac{18}{\left( x + 2 \right) \left( x^2 + 4 \right)} dx\]
\[\int\frac{5}{\left( x^2 + 1 \right) \left( x + 2 \right)} dx\]
\[\int\frac{1}{\left( x + 1 \right)^2 \left( x^2 + 1 \right)} dx\]
\[\int\frac{1}{x^4 - 1} dx\]
\[\int\frac{1}{\cos x \left( 5 - 4 \sin x \right)} dx\]
` \int \text{ x} \text{ sec x}^2 \text{ dx is equal to }`
\[\int \text{cosec}^2 x \text{ cos}^2 \text{ 2x dx} \]
\[\int \sin^4 2x\ dx\]
\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]
\[\int\frac{1}{x^2 + 4x - 5} \text{ dx }\]
\[\int x^3 \left( \log x \right)^2\text{ dx }\]
\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]
\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} \text{ dx}\]
\[\int \sin^3 \left( 2x + 1 \right) \text{dx}\]