Advertisements
Advertisements
Question
Solution
\[\text{ Let I } = \int\frac{\sin 2x}{\sin^4 x + \cos^4 x}dx\]
\[ = \int\frac{2 \text{ sin x }\cdot \text{ cos x dx}}{\sin^4 x + \cos^4 x}\]
\[\text{Dividing numerator and denominator by} \cos^4 x\]
\[ \Rightarrow \int\frac{2 \frac{\text{ sin x }\cdot \text{ cos x}}{\cos^4 x}dx}{1 + \tan^4 x}\]
\[ \Rightarrow \int\frac{2 \tan x \cdot \text{ sec}^2 x dx}{1 + \left( \tan^2 x \right)^2}\]
\[\text{ Putting tan}^2 x = t\]
\[ \Rightarrow 2 \tan x \cdot \text{ sec}^2 \text{ x dx}\]
\[ \therefore I = \int\frac{dt}{1 + t^2}\]
\[ = \tan^{- 1} t + C\]
\[ = \tan^{- 1} \left( \text{ tan}^2 x \right) + C......... \left[ \because t = \tan {}^2 x \right]\]
APPEARS IN
RELATED QUESTIONS
` ∫ e^{m sin ^-1 x}/ \sqrt{1-x^2} ` dx
If \[\int\frac{1}{5 + 4 \sin x} dx = A \tan^{- 1} \left( B \tan\frac{x}{2} + \frac{4}{3} \right) + C,\] then
\[\int\sqrt{\frac{x}{1 - x}} dx\] is equal to
The value of \[\int\frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx\] is equal to
\[\int\sin x \sin 2x \text{ sin 3x dx }\]