English

∫ Sin 2 X Sin 4 X + Cos 4 X D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]
Sum

Solution

\[\text{ Let I } = \int\frac{\sin 2x}{\sin^4 x + \cos^4 x}dx\]
\[ = \int\frac{2 \text{ sin  x  }\cdot \text{ cos  x  dx}}{\sin^4 x + \cos^4 x}\]
\[\text{Dividing numerator and denominator by} \cos^4 x\]
\[ \Rightarrow \int\frac{2 \frac{\text{ sin  x }\cdot \text{ cos  x}}{\cos^4 x}dx}{1 + \tan^4 x}\]
\[ \Rightarrow \int\frac{2 \tan x \cdot \text{ sec}^2 x dx}{1 + \left( \tan^2 x \right)^2}\]
\[\text{ Putting  tan}^2 x = t\]
\[ \Rightarrow 2 \tan x \cdot \text{ sec}^2 \text{  x  dx}\]
\[ \therefore I = \int\frac{dt}{1 + t^2}\]
\[ = \tan^{- 1} t + C\]
\[ = \tan^{- 1} \left( \text{ tan}^2 x \right) + C......... \left[ \because t = \tan {}^2 x \right]\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Revision Excercise [Page 203]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Revision Excercise | Q 41 | Page 203

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int\frac{x^5 + x^{- 2} + 2}{x^2} dx\]

\[\int\frac{\cos^2 x - \sin^2 x}{\sqrt{1} + \cos 4x} dx\]

\[\int\frac{\text{sin} \left( x - \alpha \right)}{\text{sin }\left( x + \alpha \right)} dx\]

\[\int\frac{e^{3x}}{e^{3x} + 1} dx\]

` ∫   e^{m   sin ^-1  x}/ \sqrt{1-x^2}  ` dx

 


\[\int\frac{e^{m \tan^{- 1} x}}{1 + x^2} dx\]

\[\int\frac{1}{\left( x + 1 \right)\left( x^2 + 2x + 2 \right)} dx\]

\[\int\frac{x}{x^4 + 2 x^2 + 3} dx\]

\[\int\frac{\sin 8x}{\sqrt{9 + \sin^4 4x}} dx\]

\[\int\frac{1}{x^{2/3} \sqrt{x^{2/3} - 4}} dx\]

\[\int\frac{2x + 3}{\sqrt{x^2 + 4x + 5}} \text{ dx }\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right)\left( 2 \sin x + \cos x \right)} \text{ dx }\]

`int 1/(sin x - sqrt3 cos x) dx`

\[\int x \text{ sin 2x dx }\]

\[\int e^\sqrt{x} \text{ dx }\]

\[\int\frac{x + \sin x}{1 + \cos x} \text{ dx }\]

\[\int x\left( \frac{\sec 2x - 1}{\sec 2x + 1} \right) dx\]

\[\int\left( x + 1 \right) \text{ log  x  dx }\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} dx\]

\[\int\sqrt{x^2 - 2x} \text{ dx}\]

\[\int\left( x + 1 \right) \sqrt{x^2 - x + 1} \text{ dx}\]

\[\int\left( 2x - 5 \right) \sqrt{2 + 3x - x^2} \text{  dx }\]

\[\int\frac{x^2 + 1}{x\left( x^2 - 1 \right)} dx\]

\[\int\frac{1}{\left( x - 1 \right) \left( x + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{3}{\left( 1 - x \right) \left( 1 + x^2 \right)} dx\]

\[\int\frac{x^2 - 1}{x^4 + 1} \text{ dx }\]

\[\int\frac{x + 1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

If \[\int\frac{1}{5 + 4 \sin x} dx = A \tan^{- 1} \left( B \tan\frac{x}{2} + \frac{4}{3} \right) + C,\] then


\[\int\frac{1}{1 - \cos x - \sin x} dx =\]

\[\int\sqrt{\frac{x}{1 - x}} dx\]  is equal to


The value of \[\int\frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx\] is equal to


\[\int \cos^3 (3x)\ dx\]

\[\int\sin x \sin 2x \text{ sin  3x  dx }\]


\[\int \cos^5 x\ dx\]

\[\int\frac{5x + 7}{\sqrt{\left( x - 5 \right) \left( x - 4 \right)}} \text{ dx }\]

\[\int\frac{\cos x}{\frac{1}{4} - \cos^2 x} \text{ dx }\]

\[\int\frac{\sin^6 x}{\cos x} \text{ dx }\]

\[\int\frac{\log x}{x^3} \text{ dx }\]

\[\int e^{2x} \left( \frac{1 + \sin 2x}{1 + \cos 2x} \right) dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×