English

∫ 1 ( X + 1 ) ( X 2 + 2 X + 2 ) D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{1}{\left( x + 1 \right)\left( x^2 + 2x + 2 \right)} dx\]
Sum

Solution

\[\text{Let I} = \int\frac{dx}{\left( x + 1 \right) \left( x^2 + 2x + 2 \right)}\]
\[ = \int\frac{dx}{\left( x + 1 \right) \left[ x^2 + 2x + 1 + 1 \right]}\]
\[ = \int\frac{dx}{\left( x + 1 \right) \left[ \left( x + 1 \right)^2 + 1 \right]}\]
\[\text{Putting}\ x + 1 = t\]
\[ \Rightarrow dx = dt\]
\[\text{Now, integral becomes}\]
\[I = \int\frac{dt}{t \left[ t^2 + 1 \right]}\]
\[ = \int\frac{t \cdot dt}{t^2 \left( t^2 + 1 \right)}\]
\[\text{Again putting }t^2 = p\]
\[ \Rightarrow \text{2t dt }= dp\]
\[ \Rightarrow t dt = \frac{dp}{2}\]
\[\text{Now, integral becomes}\]
\[I = \frac{1}{2} \int\frac{dp}{p \left( p + 1 \right)}\]
\[ = \frac{1}{2}\int\frac{dp}{p^2 + p}\]
\[ = \frac{1}{2}\int\frac{dp}{p^2 + p + \frac{1}{4} - \frac{1}{4}}\]
\[ = \frac{1}{2}\int\frac{dp}{\left( p + \frac{1}{2} \right)^2 - \left( \frac{1}{2} \right)^2}\]
\[ = \frac{1}{2} \left[ \frac{1}{2 \times \frac{1}{2}} \text{log }\left| \frac{p + \frac{1}{2} - \frac{1}{2}}{p + \frac{1}{2} + \frac{1}{2}} \right| \right] + C\]
\[ = \frac{1}{2} \text{log }\left| \frac{p}{p + 1} \right| + C\]
\[ = \frac{1}{2} \text{log }\left| \frac{t^2}{t^2 + 1} \right| + C\]
\[ = \frac{1}{2} \text{log }\left| \frac{\left( x + 1 \right)^2}{\left( x + 1 \right)^2 + 1} \right| + C\]
\[ = \text{log}\sqrt{\left| \frac{\left( x + 1 \right)^2}{\left( x + 1 \right)^2 + 1} \right|} + C\]
\[ = \text{log }\left| \frac{x + 1}{\sqrt{x^2 + 2x + 2}} \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.09 [Page 59]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.09 | Q 67 | Page 59

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{\sin^3 x - \cos^3 x}{\sin^2 x \cos^2 x} dx\]

\[\int \left( a \tan x + b \cot x \right)^2 dx\]

If f' (x) = x − \[\frac{1}{x^2}\]  and  f (1)  \[\frac{1}{2},    find  f(x)\]

 


\[\int\left( 5x + 3 \right) \sqrt{2x - 1} dx\]

\[\int\frac{1}{\sqrt{1 - \cos 2x}} dx\]

\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x} dx\]

`  =  ∫ root (3){ cos^2 x}  sin x   dx `


\[\int \tan^3 \text{2x sec 2x dx}\]

` ∫  tan^3    x   sec^2  x   dx  `

\[\int\frac{\sec^2 x}{1 - \tan^2 x} dx\]

\[\int\frac{x + 7}{3 x^2 + 25x + 28}\text{ dx}\]

\[\int\frac{x^2 \left( x^4 + 4 \right)}{x^2 + 4} \text{ dx }\]

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 4x + 3}} \text{ dx }\]

\[\int\cos\sqrt{x}\ dx\]

\[\int \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) \text{ dx }\]

\[\int \sin^3 \sqrt{x}\ dx\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int e^x \left( \log x + \frac{1}{x^2} \right) dx\]

\[\int\frac{1}{\left( x - 1 \right) \left( x + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{x^2 + 6x - 8}{x^3 - 4x} dx\]

\[\int\frac{1}{\left( x + 1 \right)^2 \left( x^2 + 1 \right)} dx\]

\[\int\frac{1}{x \left( x^4 + 1 \right)} dx\]

\[\int\frac{1}{\cos x \left( 5 - 4 \sin x \right)} dx\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 9}} \text{ dx}\]

If \[\int\frac{1}{5 + 4 \sin x} dx = A \tan^{- 1} \left( B \tan\frac{x}{2} + \frac{4}{3} \right) + C,\] then


\[\int e^x \left\{ f\left( x \right) + f'\left( x \right) \right\} dx =\]
 

\[\int\frac{\cos 2x - 1}{\cos 2x + 1} dx =\]

\[\int\frac{x^2}{\left( x - 1 \right)^3} dx\]

\[\int \cos^5 x\ dx\]

\[\int\frac{1}{\sqrt{x^2 - a^2}} \text{ dx }\]

\[\int\frac{1}{\sqrt{x^2 + a^2}} \text{ dx }\]

\[\int\frac{1}{3 x^2 + 13x - 10} \text{ dx }\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right) \left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int \tan^3 x\ \sec^4 x\ dx\]

\[\int x \sec^2 2x\ dx\]

\[\int\frac{e^{m \tan^{- 1} x}}{\left( 1 + x^2 \right)^{3/2}} \text{ dx}\]

\[\int\frac{x^2}{x^2 + 7x + 10}\text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×