English

∫ X 2 X 2 + 7 X + 10 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{x^2}{x^2 + 7x + 10}\text{ dx }\]
Sum

Solution

\[Let\text{ I } = \int\left( \frac{x^2}{x^2 + 7x + 10} \right)dx\]
\[\text{ Now }, \]


\[ x^2 + 7x + 10 {x^2}^1 \]
\[ x^2 + 7x + 10\]
\[ - - - \]
\[ - 7x - 10 \]
\[ \therefore \frac{x^2}{x^2 + 7x + 10} = 1 - \frac{\left( 7x + 10 \right)}{x^2 + 7x + 10}\]
\[ \Rightarrow \frac{x^2}{x^2 + 7x + 10} = 1 - \left( \frac{7x + 10}{x^2 + 2x + 5x + 10} \right)\]
\[\frac{x^2}{x^2 + 7x + 10} = 1 - \left( \frac{7x + 10}{x \left( x + 2 \right) + 5 \left( x + 2 \right)} \right)\]
\[\frac{x^2}{x^2 + 7x + 10} = 1 - \left[ \frac{7x + 10}{\left( x + 2 \right) \left( x + 5 \right)} \right] . . . . . \left( 1 \right)\]
\[\text{ Consider }, \]
\[\frac{7x + 10}{\left( x + 2 \right) \left( x + 5 \right)} = \frac{A}{\left( x + 2 \right)} + \frac{B}{x + 5}\]
\[7x + 10 = A \left( x + 5 \right) + B \left( x + 2 \right)\]
\[\text{ let } x + 5 = 0\]
\[x = - 5\]
\[ \Rightarrow 7 \left( - 5 \right) + 10 = A \times 0 + B \left( - 5 + 2 \right)\]
\[ - 25 = B \left( - 3 \right)\]
\[ \Rightarrow B = \frac{25}{3}\]
\[\text{ let } x + 2 = 0\]
\[x = - 2\]
\[7 \left( - 2 \right) + 10 = A \left( - 2 + 5 \right)\]
\[ \Rightarrow - 4 = A \left( 3 \right)\]
\[ \Rightarrow A = - \frac{4}{3}\]
\[\frac{7x + 10}{\left( x + 2 \right) \left( x + 5 \right)} = \frac{- 4}{3 \left( x + 2 \right)} + \frac{25}{3 \left( x + 5 \right)} . . . . . \left( 2 \right)\]
\[\text{ from } \left( 1 \right) \text { and } \left( 2 \right)\]
\[\frac{x^2}{x^2 + 7x + 10} = 1 + \frac{4}{3 \left( x + 2 \right)} - \frac{25}{3 \left( x + 5 \right)}\]
\[ \Rightarrow \int\frac{x^2 dx}{x^2 + 7x + 10} = \int dx + \frac{4}{3}\int\frac{dx}{x + 2} - \frac{25}{3}\int\frac{dx}{x + 5}\]
\[ = x + \frac{4}{3} \text{ log } \left| x + 2 \right| - \frac{25}{3} \text{ log } \left| x + 5 \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.2 [Page 106]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.2 | Q 5 | Page 106

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int \left( \sqrt{x} - \frac{1}{\sqrt{x}} \right)^2 dx\]

\[\int\frac{x^3}{x - 2} dx\]

\[\int     \text{sin}^2  \left( 2x + 5 \right)    \text{dx}\]

\[\int\text{sin mx }\text{cos nx dx m }\neq n\]

\[\int\frac{\sec x \tan x}{3 \sec x + 5} dx\]

\[\int\frac{\sin 2x}{\sin 5x \sin 3x} dx\]

\[\int\left( 4x + 2 \right)\sqrt{x^2 + x + 1}  \text{dx}\]

\[\int\frac{e^{2x}}{1 + e^x} dx\]

 ` ∫   1 /{x^{1/3} ( x^{1/3} -1)}   ` dx


\[\int \sin^5 x \cos x \text{ dx }\]

\[\int \cos^7 x \text{ dx  } \]

\[\int \sin^7 x  \text{ dx }\]

\[\int\frac{1}{\sin x \cos^3 x} dx\]

\[\int\frac{\cos x}{\sin^2 x + 4 \sin x + 5} dx\]

\[\int\frac{x}{3 x^4 - 18 x^2 + 11} dx\]

\[\int\frac{\sec^2 x}{\sqrt{4 + \tan^2 x}} dx\]

\[\int\frac{x + 1}{x^2 + x + 3} dx\]

\[\int\frac{2x + 5}{x^2 - x - 2} \text{ dx }\]

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]

\[\int\frac{2 \sin x + 3 \cos x}{3 \sin x + 4 \cos x} dx\]

\[\int x e^{2x} \text{ dx }\]

\[\int\cos\sqrt{x}\ dx\]

\[\int \cos^{- 1} \left( 4 x^3 - 3x \right) \text{ dx }\]

\[\int e^x \sec x \left( 1 + \tan x \right) dx\]

\[\int e^x \frac{x - 1}{\left( x + 1 \right)^3} \text{ dx }\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int e^x \cdot \frac{\sqrt{1 - x^2} \sin^{- 1} x + 1}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int(2x + 5)\sqrt{10 - 4x - 3 x^2}dx\]

\[\int\frac{x^2 + 1}{\left( 2x + 1 \right) \left( x^2 - 1 \right)} dx\]

\[\int\frac{2x + 1}{\left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{\left( x^2 + 1 \right) \left( x^2 + 2 \right)}{\left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

 


\[\int\frac{\left( x - 1 \right)^2}{x^4 + x^2 + 1} \text{ dx}\]

\[\int e^x \left( \frac{1 - \sin x}{1 - \cos x} \right) dx\]

\[\int\frac{e^x \left( 1 + x \right)}{\cos^2 \left( x e^x \right)} dx =\]

\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]


\[\int \cos^5 x\ dx\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\sqrt{1 + 2x - 3 x^2}\text{  dx } \]

\[\int \cos^{- 1} \left( 1 - 2 x^2 \right) \text{ dx }\]

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×