English

∫ X + 1 X 2 + X + 3 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{x + 1}{x^2 + x + 3} dx\]
Sum

Solution

\[\int\frac{\left( x + 1 \right) dx}{x^2 + x + 3}\]
\[x + 1 = \frac{Ad}{dx}\left( x^2 + x + 3 \right) + B\]
\[x + 1 = A \left( 2x + 1 \right) + B\]
\[x + 1 = \text{ 2 Ax + A + B }\]

Comparing Coefficients of like powers of x

\[2A = 1\]
\[A = \frac{1}{2}\]
\[A + B = 1\]
\[\frac{1}{2} + B = 1\]
\[B = \frac{1}{2}\]
\[\left( x + 1 \right) = \frac{1}{2} \left( 2x + 1 \right) + \frac{1}{2}\]

\[Now, \int\frac{\left( x + 1 \right) dx}{x^2 + x + 3}\]
\[ = \int\frac{\frac{1}{2} \left( 2x + 1 \right)dx}{x^2 + x + 3} + \frac{1}{2}\int\frac{dx}{x^2 + x + 3}\]
\[ = \frac{1}{2}\int\frac{\left( 2x + 1 \right)dx}{x^2 + x + 3} + \frac{1}{2}\int\frac{dx}{x^2 + x + \left( \frac{1}{2} \right)^2 - \left( \frac{1}{2} \right)^2 + 3}\]
\[ = \frac{1}{2}\int\frac{\left( 2x + 1 \right)dx}{x^2 + x + 3} + \frac{1}{2}\int\frac{dx}{\left( x + \frac{1}{2} \right)^2 + 3 - \frac{1}{4}}\]
\[ = \frac{1}{2}\int\frac{\left( 2x + 1 \right) dx}{x^2 + x + 3} + \frac{1}{2}\int\frac{dx}{\left( x + \frac{1}{2} \right)^2 + \left( \frac{\sqrt{11}}{2} \right)^2}\]
\[ = \frac{1}{2} \text{ log }\left| x^2 + x + 3 \right| + \frac{1}{2} \times \frac{2}{\sqrt{11}} \text{ tan}^{- 1} \left( \frac{x + \frac{1}{2}}{\frac{\sqrt{11}}{2}} \right) + C\]
\[ = \frac{1}{2} \text{ log }\left| x^2 + x + 3 \right| + \frac{1}{\sqrt{11}} \text{ tan}^{- 1} \left( \frac{2x + 1}{\sqrt{11}} \right) + C\]

 

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.19 [Page 104]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.19 | Q 2 | Page 104

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int \tan^{- 1} \left( \frac{\sin 2x}{1 + \cos 2x} \right) dx\]

\[\int\frac{1 - \sin x}{x + \cos x} dx\]

\[\int\frac{a}{b + c e^x} dx\]

\[\int\frac{\sin 2x}{\sin 5x \sin 3x} dx\]

` ∫  tan 2x tan 3x  tan 5x    dx  `

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int\frac{x}{x^4 + 2 x^2 + 3} dx\]

\[\int\frac{3 x^5}{1 + x^{12}} dx\]

` ∫  { x^2 dx}/{x^6 - a^6} dx `

\[\int\frac{\left( 3 \sin x - 2 \right) \cos x}{5 - \cos^2 x - 4 \sin x} dx\]

\[\int\frac{x^3}{x^4 + x^2 + 1}dx\]

\[\int\frac{x^2 + x + 1}{x^2 - x} dx\]

\[\int\frac{1}{3 + 2 \cos^2 x} \text{ dx }\]

\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

`int 1/(cos x - sin x)dx`

\[\int\frac{1}{3 + 4 \cot x} dx\]

\[\int x e^{2x} \text{ dx }\]

\[\int\frac{\text{ log }\left( x + 2 \right)}{\left( x + 2 \right)^2}  \text{ dx }\]

\[\int x^3 \tan^{- 1}\text{  x dx }\]

\[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 3 \right)} dx\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x + 1 \right)^2} dx\]

\[\int\frac{2 x^2 + 7x - 3}{x^2 \left( 2x + 1 \right)} dx\]

\[\int\frac{18}{\left( x + 2 \right) \left( x^2 + 4 \right)} dx\]

\[\int\frac{1}{\left( x + 1 \right)^2 \left( x^2 + 1 \right)} dx\]

\[\int\frac{1}{x^4 + 3 x^2 + 1} \text{ dx }\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

` \int \text{ x} \text{ sec x}^2 \text{  dx  is  equal  to }`

 


\[\int e^x \left( \frac{1 - \sin x}{1 - \cos x} \right) dx\]

\[\int\sqrt{\frac{x}{1 - x}} dx\]  is equal to


\[\int e^x \left\{ f\left( x \right) + f'\left( x \right) \right\} dx =\]
 

\[\int \tan^4 x\ dx\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{1}{4 x^2 + 4x + 5} dx\]

\[\int\frac{x + 1}{x^2 + 4x + 5} \text{  dx}\]

\[\int\frac{\sqrt{a} - \sqrt{x}}{1 - \sqrt{ax}}\text{  dx }\]

\[\int\frac{1}{x\sqrt{1 + x^3}} \text{ dx}\]

\[\int x^2 \tan^{- 1} x\ dx\]

\[\int\frac{\sin 4x - 2}{1 - \cos 4x} e^{2x} \text{ dx}\]

Find: `int (3x +5)/(x^2+3x-18)dx.`


Find: `int (sin2x)/sqrt(9 - cos^4x) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×