Advertisements
Advertisements
Question
Find: `int (sin2x)/sqrt(9 - cos^4x) dx`
Sum
Solution
Put `cos^2x` = t ⇒ `−2cosxsinxdx` = dt ⇒ `sin2xdx = -dt`
The given integral = `- int (dt)/sqrt(3^2 - t^2) = - sin^(-1) t/3 + c = - sin^(-1) (cos^2x)/3 + c`
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\left( 3x\sqrt{x} + 4\sqrt{x} + 5 \right)dx\]
\[\int\frac{1}{1 - \cos x} dx\]
\[\int \cos^{- 1} \left( \sin x \right) dx\]
` ∫ 1/ {1+ cos 3x} ` dx
\[\int\frac{1}{x (3 + \log x)} dx\]
\[\int\frac{x + 1}{x \left( x + \log x \right)} dx\]
\[\int\frac{\sin 2x}{\sin \left( x - \frac{\pi}{6} \right) \sin \left( x + \frac{\pi}{6} \right)} dx\]
\[\int \sin^5\text{ x }\text{cos x dx}\]
\[\int\frac{\sin 2x}{\left( a + b \cos 2x \right)^2} dx\]
\[\int\frac{\left( x + 1 \right) e^x}{\sin^2 \left( \text{x e}^x \right)} dx\]
\[\int\frac{x^2}{\sqrt{1 - x}} dx\]
` ∫ tan^5 x sec ^4 x dx `
\[\int\frac{1}{\sqrt{5 x^2 - 2x}} dx\]
`int 1/(sin x - sqrt3 cos x) dx`
\[\int\frac{1}{4 + 3 \tan x} dx\]
\[\int x^2 \text{ cos x dx }\]
\[\int e^x \sec x \left( 1 + \tan x \right) dx\]
\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]
\[\int e^x \left( \log x + \frac{1}{x} \right) dx\]
\[\int\frac{\left( x - 1 \right)^2}{x^4 + x^2 + 1} \text{ dx}\]
\[\int e^x \left( 1 - \cot x + \cot^2 x \right) dx =\]
\[\int\frac{\cos 2x - 1}{\cos 2x + 1} dx =\]
\[\int\frac{\sin x}{\sqrt{1 + \sin x}} dx\]
\[\int\frac{x + 1}{x^2 + 4x + 5} \text{ dx}\]
\[\int\sqrt{\frac{1 - x}{x}} \text{ dx}\]
\[\int\frac{1}{\sin x \left( 2 + 3 \cos x \right)} \text{ dx }\]
\[\int\frac{\sin^6 x}{\cos x} \text{ dx }\]
\[\int x\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]
\[\int\frac{\sin x + \cos x}{\sin^4 x + \cos^4 x} \text{ dx }\]
\[\int\frac{\sin 4x - 2}{1 - \cos 4x} e^{2x} \text{ dx}\]