English

Find: ∫sin2x9-cos4xdx - Mathematics

Advertisements
Advertisements

Question

Find: `int (sin2x)/sqrt(9 - cos^4x) dx`

Sum

Solution

Put `cos^2x` = t ⇒ `−2cosxsinxdx` = dt ⇒ `sin2xdx = -dt`

The given integral = `- int (dt)/sqrt(3^2 - t^2) = - sin^(-1)  t/3 + c = - sin^(-1)  (cos^2x)/3 + c`

shaalaa.com
  Is there an error in this question or solution?
2021-2022 (April) Term 2 Sample

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left( 3x\sqrt{x} + 4\sqrt{x} + 5 \right)dx\]

\[\int\frac{1}{1 - \cos x} dx\]

\[\int \cos^{- 1} \left( \sin x \right) dx\]

` ∫  1/ {1+ cos   3x}  ` dx


\[\int\frac{1}{x (3 + \log x)} dx\]

\[\int\frac{x + 1}{x \left( x + \log x \right)} dx\]

\[\int\frac{\sin 2x}{\sin \left( x - \frac{\pi}{6} \right) \sin \left( x + \frac{\pi}{6} \right)} dx\]

\[\int \sin^5\text{ x }\text{cos x dx}\]

\[\int\frac{\sin 2x}{\left( a + b \cos 2x \right)^2} dx\]

\[\int\frac{\left( x + 1 \right) e^x}{\sin^2 \left( \text{x e}^x \right)} dx\]

\[\int\frac{x^2}{\sqrt{1 - x}} dx\]

` ∫  tan^5 x   sec ^4 x   dx `

\[\int\frac{1}{\sqrt{5 x^2 - 2x}} dx\]

`int 1/(sin x - sqrt3 cos x) dx`

\[\int\frac{1}{4 + 3 \tan x} dx\]

\[\int x^2 \text{ cos x dx }\]

\[\int e^x \sec x \left( 1 + \tan x \right) dx\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int e^x \left( \log x + \frac{1}{x} \right) dx\]

\[\int\frac{\left( x - 1 \right)^2}{x^4 + x^2 + 1} \text{ dx}\]

\[\int e^x \left( 1 - \cot x + \cot^2 x \right) dx =\]

\[\int\frac{\cos 2x - 1}{\cos 2x + 1} dx =\]

\[\int\frac{\sin x}{\sqrt{1 + \sin x}} dx\]

\[\int\frac{x + 1}{x^2 + 4x + 5} \text{  dx}\]

\[\int\sqrt{\frac{1 - x}{x}} \text{ dx}\]


\[\int\frac{1}{\sin x \left( 2 + 3 \cos x \right)} \text{ dx }\]

\[\int\frac{\sin^6 x}{\cos x} \text{ dx }\]

\[\int x\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\frac{\sin x + \cos x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{\sin 4x - 2}{1 - \cos 4x} e^{2x} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×