English

∫ X √ 1 − X 1 + X Dx - Mathematics

Advertisements
Advertisements

Question

\[\int x\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]
Sum

Solution

\[\text{We have},\]
\[I = \int x\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]
\[ \Rightarrow I = \int x\sqrt{\frac{\left( 1 - x \right)\left( 1 - x \right)}{\left( 1 + x \right)\left( 1 - x \right)}} \text{ dx }\]
\[ \Rightarrow I = \int x\frac{\left( 1 - x \right)}{\sqrt{1 - x^2}} \text{ dx }\]
\[ \Rightarrow I = \int\frac{x - x^2}{\sqrt{1 - x^2}} \text{ dx }\]
\[ \Rightarrow I = \int\frac{x - x^2 - 1 + 1}{\sqrt{1 - x^2}} \text{ dx }\]
\[ \Rightarrow I = \int\frac{- x^2 + 1}{\sqrt{1 - x^2}} dx + \int\frac{x - 1}{\sqrt{1 - x^2}} \text{ dx }\]
\[ \Rightarrow I = \int\sqrt{1 - x^2} dx + \int\frac{x}{\sqrt{1 - x^2}} dx - \int\frac{1}{\sqrt{1 - x^2}} \text{ dx }\]
\[ \Rightarrow I = \frac{x}{2}\sqrt{1 - x^2} + \frac{1}{2} \sin^{- 1} \left( x \right) + C_1 - \sqrt{1 - x^2} + C_2 - \sin^{- 1} \left( x \right) + C_3 ....................\left[ \because \int\frac{x}{\sqrt{1 - x^2}}\text{  dx }= - \sqrt{1 - x^2} + C_2 \right]\]
\[ \Rightarrow I = \sqrt{1 - x^2}\left( \frac{x}{2} - 1 \right) - \frac{1}{2} \sin^{- 1} \left( x \right) + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Revision Excercise [Page 204]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Revision Excercise | Q 105 | Page 204

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{\left( 1 + x \right)^3}{\sqrt{x}} dx\] 

\[\int \left( a \tan x + b \cot x \right)^2 dx\]

\[\int\frac{1}{\sqrt{2x + 3} + \sqrt{2x - 3}} dx\]

\[\int\sin x\sqrt{1 + \cos 2x} dx\]

\[\int\frac{1 + \cos x}{1 - \cos x} dx\]

\[\int\frac{x + 1}{\sqrt{2x + 3}} dx\]

\[\int\frac{\cos x}{\cos \left( x - a \right)} dx\] 

\[\int\sqrt{\frac{1 - \sin 2x}{1 + \sin 2x}} dx\]

` ∫ {"cosec"   x }/ { log  tan   x/2 ` dx 

\[\int\frac{1}{      x      \text{log x } \text{log }\left( \text{log x }\right)} dx\]

\[\int 5^{x + \tan^{- 1} x} . \left( \frac{x^2 + 2}{x^2 + 1} \right) dx\]

\[\int\frac{\cos\sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{x + \sqrt{x + 1}}{x + 2} dx\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

\[\int\frac{1}{\sqrt{a^2 + b^2 x^2}} dx\]

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 + 1}} dx\]

\[\int\frac{e^x}{\left( 1 + e^x \right)\left( 2 + e^x \right)} dx\]

\[\int\frac{x^3}{x^4 + x^2 + 1}dx\]

\[\int\frac{\cos x}{\cos 3x} \text{ dx }\]

\[\int\frac{1}{4 \cos x - 1} \text{ dx }\]

\[\int\frac{2 \sin x + 3 \cos x}{3 \sin x + 4 \cos x} dx\]

\[\int\cos\sqrt{x}\ dx\]

\[\int x^2 \sin^{- 1} x\ dx\]

\[\int x \cos^3 x\ dx\]

\[\int\left\{ \tan \left( \log x \right) + \sec^2 \left( \log x \right) \right\} dx\]

\[\int\frac{18}{\left( x + 2 \right) \left( x^2 + 4 \right)} dx\]

\[\int\sqrt{\cot \text{θ} d  } \text{ θ}\]

\[\int\frac{x^2 + 1}{x^4 + 7 x^2 + 1} 2 \text{ dx }\]

\[\int\frac{1}{x^4 + 3 x^2 + 1} \text{ dx }\]

\[\int\frac{x + 1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

\[\int\frac{x^2}{\left( x - 1 \right) \sqrt{x + 2}}\text{  dx}\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} dx\]

If \[\int\frac{1}{5 + 4 \sin x} dx = A \tan^{- 1} \left( B \tan\frac{x}{2} + \frac{4}{3} \right) + C,\] then


\[\int\frac{\sin x}{3 + 4 \cos^2 x} dx\]

\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x}\]

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} \text{ dx }\]
 
 

\[\int\frac{1}{\text{ sin} \left( x - a \right) \text{ sin } \left( x - b \right)} \text{ dx }\]

\[\int\frac{\log \left( 1 - x \right)}{x^2} \text{ dx}\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{  dx}\]

\[\int\frac{1}{\left( x^2 + 2 \right) \left( x^2 + 5 \right)} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×