English

∫ X + √ X + 1 X + 2 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{x + \sqrt{x + 1}}{x + 2} dx\]
Sum

Solution

\[We\ have, \]
\[I = \int\frac{x + \sqrt{x + 1}}{x + 2} dx\]
\[\text{Let}, x + 1 = t^2 \]
\[\text{Differentiating both sides we get}\]
\[dx = 2tdt\]
\[\text{Now, integration becomes}\]
\[I = \int\frac{\left( t^2 - 1 + t \right)}{t^2 + 1}2t dt\]
\[ = 2\int\frac{t^3 + t^2 - t}{t^2 + 1} dt\]
\[ = 2\int\frac{t^3 + t - t + t^2 + 1 - 1 - t}{t^2 + 1} dt\]
\[ = 2\int\frac{t^3 + t + t^2 + 1 - t - t - 1}{t^2 + 1} dt\]
\[ = 2\int\frac{t^3 + t}{t^2 + 1} dt + + 2\int\frac{t^2 + 1}{t^2 + 1} dt + 2\int\frac{- 2t - 1}{t^2 + 1} dt\]
\[ = 2\  ∫  tdt + 2\  ∫ dt - 2\int\frac{2t}{t^2 + 1} dt - 2\int\frac{1}{t^2 + 1} dt\]
\[ = t^2 + \text{2t - 2}\text{log }\left| t^2 + 1 \right| - 2 \tan^{- 1} t + C\]
\[ = \left( x + 1 \right) + 2\sqrt{x + 1} - 2\text{log} \left| x + 2 \right| - 2 \tan^{- 1} \sqrt{x + 1} + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.09 [Page 59]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.09 | Q 63 | Page 59

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{\left( 1 + x \right)^3}{\sqrt{x}} dx\] 

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int \tan^{- 1} \left( \frac{\sin 2x}{1 + \cos 2x} \right) dx\]

\[\int\frac{1 + \cos x}{1 - \cos x} dx\]

\[\int\frac{x + 1}{\sqrt{2x + 3}} dx\]

\[\int\text{sin mx }\text{cos nx dx m }\neq n\]

\[\int\frac{e^{3x}}{e^{3x} + 1} dx\]

\[\int\frac{\cos 4x - \cos 2x}{\sin 4x - \sin 2x} dx\]

`  =  ∫ root (3){ cos^2 x}  sin x   dx `


\[\int\frac{1}{\sqrt{x} + x} \text{ dx }\]

\[\int\frac{x^2}{\sqrt{x - 1}} dx\]

\[\int\frac{1}{\sqrt{a^2 - b^2 x^2}} dx\]

\[\int\frac{x}{3 x^4 - 18 x^2 + 11} dx\]

\[\int\frac{e^x}{\left( 1 + e^x \right)\left( 2 + e^x \right)} dx\]

\[\int\frac{1}{\sqrt{\left( x - \alpha \right)\left( \beta - x \right)}} dx, \left( \beta > \alpha \right)\]

\[\int\frac{1}{\sqrt{16 - 6x - x^2}} dx\]

\[\int\frac{x + 1}{x^2 + x + 3} dx\]

\[\int\frac{a x^3 + bx}{x^4 + c^2} dx\]

\[\int\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\frac{1}{\cos x \left( \sin x + 2 \cos x \right)} dx\]

\[\int\frac{1}{2 + \sin x + \cos x} \text{ dx }\]

\[\int\frac{1}{4 + 3 \tan x} dx\]

\[\int x^3 \text{ log x dx }\]

\[\int x e^{2x} \text{ dx }\]

\[\int \log_{10} x\ dx\]

\[\int e^x \cdot \frac{\sqrt{1 - x^2} \sin^{- 1} x + 1}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\sqrt{2ax - x^2} \text{ dx}\]

\[\int x\sqrt{x^2 + x} \text{  dx }\]

\[\int\frac{x^3}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{1}{\left( x + 1 \right)^2 \left( x^2 + 1 \right)} dx\]

\[\int\frac{\left( x^2 + 1 \right) \left( x^2 + 2 \right)}{\left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

 


\[\int\frac{x}{\left( x^2 + 2x + 2 \right) \sqrt{x + 1}} \text{ dx}\]

Write a value of

\[\int e^{3 \text{ log x}} x^4\text{ dx}\]

\[\int e^x \left( \frac{1 - \sin x}{1 - \cos x} \right) dx\]

\[\int\frac{\sin^2 x}{\cos^4 x} dx =\]

\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int x\sqrt{2x + 3} \text{ dx }\]

\[\int\sqrt{\text{ cosec  x} - 1} \text{ dx }\]

\[\int\sqrt{x^2 - a^2} \text{ dx}\]

\[\int\frac{1}{1 + x + x^2 + x^3} \text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×