Advertisements
Advertisements
Question
\[\int \tan^{- 1} \left( \frac{\sin 2x}{1 + \cos 2x} \right) dx\]
Sum
Solution
\[\int \tan^{- 1} \left[ \frac{\sin \left( 2x \right)}{1 + \cos2x} \right]dx\]
`= ∫ tan ^-1 [ (2 sin x cos x) / ( 2 cos^2 x)] `dx ` [∴ sin 2x = 2 sin x cos x & 1 + cos 2x = 2 cos ^2 x ]`
\[ = \int \tan^{- 1} \left[ \tan x \right]\]
\[ = \int \tan^{- 1} \left[ \tan x \right]\]
` = ∫ x dx `
\[ = \frac{x^2}{2} + C\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\frac{x^2 + x + 5}{3x + 2} dx\]
\[\int\frac{1}{\sqrt{1 - \cos 2x}} dx\]
\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x} dx\]
` ∫ tan 2x tan 3x tan 5x dx `
\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]
\[\int\frac{x \sin^{- 1} x^2}{\sqrt{1 - x^4}} dx\]
` ∫ tan^3 x sec^2 x dx `
\[\int \cot^5 \text{ x } {cosec}^4 x\text{ dx }\]
\[\int \sin^7 x \text{ dx }\]
\[\int\frac{1}{\sin^4 x \cos^2 x} dx\]
\[\int\frac{1}{\sqrt{1 + 4 x^2}} dx\]
\[\int\frac{\sec^2 x}{1 - \tan^2 x} dx\]
\[\int\frac{x}{3 x^4 - 18 x^2 + 11} dx\]
\[\int\frac{e^x}{\left( 1 + e^x \right)\left( 2 + e^x \right)} dx\]
\[\int\frac{1}{\sqrt{2x - x^2}} dx\]
\[\int\frac{\sin 2x}{\sqrt{\cos^4 x - \sin^2 x + 2}} dx\]
\[\int\frac{1}{1 - \tan x} \text{ dx }\]
\[\int\frac{5 \cos x + 6}{2 \cos x + \sin x + 3} \text{ dx }\]
\[\int x \cos^2 x\ dx\]
\[\int \log_{10} x\ dx\]
\[\int \sin^{- 1} \sqrt{x} \text{ dx }\]
\[\int \cos^{- 1} \left( 4 x^3 - 3x \right) \text{ dx }\]
\[\int x^2 \tan^{- 1} x\text{ dx }\]
\[\int x \cos^3 x\ dx\]
\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]
\[\int\left( 2x - 5 \right) \sqrt{2 + 3x - x^2} \text{ dx }\]
\[\int\left( x - 2 \right) \sqrt{2 x^2 - 6x + 5} \text{ dx }\]
\[\int\frac{x}{\left( x + 1 \right) \left( x^2 + 1 \right)} dx\]
Write the anti-derivative of \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]
\[\int\frac{1}{1 - \cos x - \sin x} dx =\]
\[\int\frac{\cos 2x - 1}{\cos 2x + 1} dx =\]
\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} \text{ dx }\]
\[\int \cot^4 x\ dx\]
\[\int\sqrt{\frac{1 + x}{x}} \text{ dx }\]
\[\int\frac{1}{\left( \sin x - 2 \cos x \right) \left( 2 \sin x + \cos x \right)} \text{ dx }\]
\[\int\frac{\sin^2 x}{\cos^6 x} \text{ dx }\]
\[\int\sqrt{a^2 - x^2}\text{ dx }\]
\[\int x\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]
\[\int \sin^{- 1} \sqrt{x}\ dx\]
\[\int\frac{\sin 4x - 2}{1 - \cos 4x} e^{2x} \text{ dx}\]