Advertisements
Advertisements
Question
Solution
\[\text{We have}, \]
\[I = \int\left( \frac{\sin 4x - 2}{1 - \cos 4x} \right) e^{2x} \text{ dx}\]
\[ = \int\left( \frac{2 \sin 2x \cos 2x - 2}{2 \sin^2 2x} \right) e^{2x} \text{ dx}\]
\[ = \int\left[ \cot \left( 2x \right) - {cosec}^2 \left( 2x \right) \right] e^{2x} \text{ dx}\]
\[\text{ Let e}^{2x} \cot \left( 2x \right) = t\]
\[ \Rightarrow \left[ 2 e^{2x} \cot \left( 2x \right) + e^{2x} \left\{ - {cosec}^2 \left( 2x \right) \right\} \times 2 \right] dx = dt\]
\[ \Rightarrow e^{2x} \left[ \cot 2x - {cosec}^2 \left( 2x \right) \right] dx = \frac{dt}{2}\]
\[ \therefore I = \frac{1}{2}\int dt\]
\[ = \frac{t}{2} + C\]
\[ = \frac{1}{2}\text{ e}^{2x} \text{ cot } \left( \text{ 2x} \right) + C\]
APPEARS IN
RELATED QUESTIONS
\[\int \tan^2 \left( 2x - 3 \right) dx\]
`∫ cos ^4 2x dx `
If \[\int\frac{1}{5 + 4 \sin x} dx = A \tan^{- 1} \left( B \tan\frac{x}{2} + \frac{4}{3} \right) + C,\] then
If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\] then k is equal to
Find : \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\]