English

∫ Sin 4 X − 2 1 − Cos 4 X E 2 X Dx - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{\sin 4x - 2}{1 - \cos 4x} e^{2x} \text{ dx}\]
Sum

Solution

\[\text{We have}, \]
\[I = \int\left( \frac{\sin 4x - 2}{1 - \cos 4x} \right) e^{2x} \text{ dx}\]
\[ = \int\left( \frac{2 \sin 2x \cos 2x - 2}{2 \sin^2 2x} \right) e^{2x} \text{ dx}\]
\[ = \int\left[ \cot \left( 2x \right) - {cosec}^2 \left( 2x \right) \right] e^{2x} \text{ dx}\]
\[\text{ Let e}^{2x} \cot \left( 2x \right) = t\]
\[ \Rightarrow \left[ 2 e^{2x} \cot \left( 2x \right) + e^{2x} \left\{ - {cosec}^2 \left( 2x \right) \right\} \times 2 \right] dx = dt\]
\[ \Rightarrow e^{2x} \left[ \cot 2x - {cosec}^2 \left( 2x \right) \right] dx = \frac{dt}{2}\]
\[ \therefore I = \frac{1}{2}\int dt\]
\[ = \frac{t}{2} + C\]
\[ = \frac{1}{2}\text{  e}^{2x} \text{ cot } \left( \text{ 2x} \right) + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Revision Excercise [Page 205]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Revision Excercise | Q 129 | Page 205

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{1}{1 - \cos 2x} dx\]

\[\int \tan^2 \left( 2x - 3 \right) dx\]


`∫     cos ^4  2x   dx `


\[\int\frac{\cos 4x - \cos 2x}{\sin 4x - \sin 2x} dx\]

\[\int\frac{x + 1}{x \left( x + \log x \right)} dx\]

` ∫  tan 2x tan 3x  tan 5x    dx  `

\[\int\frac{\cos x - \sin x}{1 + \sin 2x} dx\]

\[\int\frac{\sin \left( \tan^{- 1} x \right)}{1 + x^2} dx\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} dx\]

\[\int \cot^5 x  \text{ dx }\]

\[\int\frac{1}{x \left( x^6 + 1 \right)} dx\]

\[\int\frac{\left( 3\sin x - 2 \right)\cos x}{13 - \cos^2 x - 7\sin x}dx\]

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

\[\int\frac{\left( x - 1 \right)^2}{x^2 + 2x + 2} dx\]

\[\int\frac{x^2 \left( x^4 + 4 \right)}{x^2 + 4} \text{ dx }\]

\[\int\frac{1}{\cos 2x + 3 \sin^2 x} dx\]

\[\int\frac{1}{5 + 4 \cos x} dx\]

\[\int\frac{1}{2 + \sin x + \cos x} \text{ dx }\]

\[\int x e^{2x} \text{ dx }\]

\[\int\frac{\log \left( \log x \right)}{x} dx\]

\[\int x \cos^2 x\ dx\]

\[\int\frac{\log x}{x^n}\text{  dx }\]

\[\int x^2 \sin^2 x\ dx\]

\[\int e^x \cdot \frac{\sqrt{1 - x^2} \sin^{- 1} x + 1}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{e^x \left( x - 4 \right)}{\left( x - 2 \right)^3} \text{ dx }\]

\[\int\sqrt{x^2 - 2x} \text{ dx}\]

\[\int\left( x + 2 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\left( 2x + 3 \right) \sqrt{x^2 + 4x + 3} \text{  dx }\]

\[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 3 \right)} dx\]

\[\int\frac{x^2 + 6x - 8}{x^3 - 4x} dx\]

\[\int\frac{x^2}{\left( x^2 + 1 \right) \left( 3 x^2 + 4 \right)} dx\]

\[\int\frac{1}{x \left( x^4 + 1 \right)} dx\]

\[\int\frac{x^2 + 1}{x^4 + x^2 + 1} \text{  dx }\]

\[\int\frac{1}{x^4 + 3 x^2 + 1} \text{ dx }\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x^2 + 1}} \text{ dx }\]

If \[\int\frac{1}{5 + 4 \sin x} dx = A \tan^{- 1} \left( B \tan\frac{x}{2} + \frac{4}{3} \right) + C,\] then


If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\]  then k is equal to


\[\int\frac{1}{\left( \sin^{- 1} x \right) \sqrt{1 - x^2}} \text{ dx} \]

\[\int\frac{x^2}{\sqrt{1 - x}} \text{ dx }\]

Find :  \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\] 

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×