English

∫ Sin ( Tan − 1 X ) 1 + X 2 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{\sin \left( \tan^{- 1} x \right)}{1 + x^2} dx\]
Sum

Solution

\[\int\frac{\sin \left( \tan^{- 1} x \right)}{1 + x^2}dx\]
\[\text{Let} \tan^{- 1} x = t\]
\[ \Rightarrow \frac{1}{1 + x^2}dx = dt\]
\[Now, \int\frac{\sin \left( \tan^{- 1} x \right)}{1 + x^2}dx\]
\[ = \int\text{sin t dt} \]
\[ = - \cos \left( t \right) + C\]
\[ = - \cos \left( \tan^{- 1} x \right) + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.09 [Page 59]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.09 | Q 52 | Page 59

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

 
\[\int\frac{\cos x}{1 - \cos x} \text{dx }or \int\frac{\cot x}{\text{cosec         } {x }- \cot x} dx\]

\[\int\frac{1}{\text{cos}^2\text{ x }\left( 1 - \text{tan x} \right)^2} dx\]

\[\int\frac{1}{\sqrt{1 - \cos 2x}} dx\]

\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x} dx\]

\[\int\frac{1}{1 + \sqrt{x}} dx\]

\[\int x^3 \cos x^4 dx\]

\[\int\frac{x \sin^{- 1} x^2}{\sqrt{1 - x^4}} dx\]

\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} dx\]

 


\[\ \int\ x \left( 1 - x \right)^{23} dx\]

 


\[\int \sin^3 x \cos^5 x \text{ dx  }\]

\[\int\frac{1}{\sqrt{a^2 + b^2 x^2}} dx\]

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 - 1}} dx\]

\[\int\frac{1}{2 x^2 - x - 1} dx\]

\[\int\frac{2x - 3}{x^2 + 6x + 13} dx\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{1}{2 + \sin x + \cos x} \text{ dx }\]

\[\int\frac{1}{3 + 4 \cot x} dx\]

\[\int x^3 \text{ log x dx }\]

\[\int x^2 e^{- x} \text{ dx }\]

\[\int\frac{x + \sin x}{1 + \cos x} \text{ dx }\]

\[\int {cosec}^3 x\ dx\]

\[\int e^x \left( \cot x + \log \sin x \right) dx\]

\[\int\left( 2x - 5 \right) \sqrt{2 + 3x - x^2} \text{  dx }\]

Find \[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)^2}dx\]

\[\int\sqrt{\cot \text{θ} d  } \text{ θ}\]

\[\int\frac{x^2 - 3x + 1}{x^4 + x^2 + 1} \text{ dx }\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} \text{ dx}\]

\[\int\left( x - 1 \right) e^{- x} dx\] is equal to

\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{1}{\sqrt{3 - 2x - x^2}} \text{ dx}\]

\[\int\frac{x + 1}{x^2 + 4x + 5} \text{  dx}\]

\[\int\frac{1}{1 + 2 \cos x} \text{ dx }\]

\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int\sqrt{x^2 - a^2} \text{ dx}\]

\[\int \log_{10} x\ dx\]

\[\int x^2 \tan^{- 1} x\ dx\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{  dx}\]

\[\int\frac{e^{m \tan^{- 1} x}}{\left( 1 + x^2 \right)^{3/2}} \text{ dx}\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×