Advertisements
Advertisements
Question
\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x}\]
Sum
Solution
\[\text{ Let I } = \int\frac{\sin 2x}{a^2 + b^2 \sin^2 x}dx\]
\[\text{ Putting a }+ b^2 \sin^2 x = t\]
\[ \Rightarrow b^2 \left( 2 \sin x \cos x \right) dx = dt\]
\[ \Rightarrow b^2 \times \text{ sin 2x dx} = dt\]
\[ \therefore I = \frac{1}{b^2}\int\frac{dt}{t}\]
\[ = \frac{1}{b^2}\text{ ln }\left| t \right| + C \]
\[ = \frac{1}{b^2}\text{ ln }\left| a^2 + b^2 \sin^2 x \right| + C ................\left( \because t = a + b^2 \sin^2 x \right)\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\frac{\cos^2 x - \sin^2 x}{\sqrt{1} + \cos 4x} dx\]
\[\int\frac{\tan x}{\sec x + \tan x} dx\]
\[\int \cot^{- 1} \left( \frac{\sin 2x}{1 - \cos 2x} \right) dx\]
\[\int \left( 2x - 3 \right)^5 + \sqrt{3x + 2} \text{dx} \]
\[\int\frac{x + 3}{\left( x + 1 \right)^4} dx\]
\[\int\left( x + 2 \right) \sqrt{3x + 5} \text{dx} \]
Integrate the following integrals:
\[\int\text{sin 2x sin 4x sin 6x dx} \]
` ∫ {sin 2x} /{a cos^2 x + b sin^2 x } ` dx
\[\int\frac{a}{b + c e^x} dx\]
` = ∫ root (3){ cos^2 x} sin x dx `
\[\int \tan^{3/2} x \sec^2 \text{x dx}\]
\[\int\frac{\sin 2x}{\left( a + b \cos 2x \right)^2} dx\]
\[\ ∫ x \text{ e}^{x^2} dx\]
\[\int \cot^n {cosec}^2 \text{ x dx } , n \neq - 1\]
\[\int\frac{x^3}{x^4 + x^2 + 1}dx\]
\[\int\frac{x^2 + 1}{x^2 - 5x + 6} dx\]
\[\int\frac{x^3 + x^2 + 2x + 1}{x^2 - x + 1}\text{ dx }\]
\[\int\frac{x + 2}{\sqrt{x^2 - 1}} \text{ dx }\]
\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]
\[\int\frac{\left( x \tan^{- 1} x \right)}{\left( 1 + x^2 \right)^{3/2}} \text{ dx }\]
\[\int\left( \tan^{- 1} x^2 \right) x\ dx\]
\[\int x\sqrt{x^4 + 1} \text{ dx}\]
\[\int\left( 2x - 5 \right) \sqrt{x^2 - 4x + 3} \text{ dx }\]
\[\int\frac{x^2}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]
\[\int\frac{5}{\left( x^2 + 1 \right) \left( x + 2 \right)} dx\]
\[\int\frac{1}{1 + x + x^2 + x^3} dx\]
\[\int\frac{1}{\sin x + \sin 2x} dx\]
\[\int\sqrt{\cot \text{θ} d } \text{ θ}\]
\[\int e^x \left( 1 - \cot x + \cot^2 x \right) dx =\]
\[\int\frac{1}{7 + 5 \cos x} dx =\]
\[\int\frac{1}{e^x + 1} \text{ dx }\]
\[\int \cot^5 x\ dx\]
\[\int\frac{1}{x \sqrt{1 + x^n}} \text{ dx}\]
\[\int\frac{1 + x^2}{\sqrt{1 - x^2}} \text{ dx }\]
\[\int e^{2x} \left( \frac{1 + \sin 2x}{1 + \cos 2x} \right) dx\]
\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} \text{ dx}\]
\[\int\frac{x}{x^3 - 1} \text{ dx}\]
\[\int\frac{x^2 - 2}{x^5 - x} \text{ dx}\]
Evaluate : \[\int\frac{\cos 2x + 2 \sin^2 x}{\cos^2 x}dx\] .
\[\int\frac{x^2}{x^2 + 7x + 10} dx\]