English

∫ X 2 ( X − 1 ) ( X − 2 ) ( X − 3 ) D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{x^2}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]
Sum

Solution

\[\int\frac{x^2}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)}dx\]
\[\text{Let }\frac{x^2}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} = \frac{A}{x - 1} + \frac{B}{x - 2} + \frac{C}{x - 3}\]
\[ \Rightarrow \frac{x^2}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} = \frac{A \left( x - 2 \right) \left( x - 3 \right) + B \left( x - 1 \right) \left( x - 3 \right) + C \left( x - 1 \right) \left( x - 2 \right)}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)}\]
\[ \Rightarrow x^2 = A \left( x - 2 \right) \left( x - 3 \right) + B \left( x - 1 \right) \left( x - 3 \right) + C \left( x - 1 \right) \left( x - 2 \right) ............(1)\]
\[\text{Putting }x - 1 = 0\text{ or }x = 1\text{ in eq (1)}\]
\[ \Rightarrow 1 = A \left( 1 - 2 \right) \left( 1 - 3 \right)\]
\[ \Rightarrow 1 = A \left( - 1 \right) \left( - 2 \right)\]
\[ \Rightarrow A = \frac{1}{2}\]
\[\text{Putting }x - 2 = 0\text{ or }x = 2\text{ in eq (1)}\]
\[ \Rightarrow 4 = B \left( 2 - 1 \right) \left( 2 - 3 \right)\]
\[ \Rightarrow B = - 4\]
\[\text{Putting }x - 3 = 0\text{ or }x = 3\text{ in eq (1)}\]
\[ \Rightarrow 9 = C \left( 3 - 1 \right) \left( 3 - 2 \right)\]
\[ \Rightarrow C = \frac{9}{2}\]
\[ \therefore \frac{x^2}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} = \frac{1}{2 \left( x - 1 \right)} - \frac{4}{x - 2} + \frac{9}{2 \left( x - 3 \right)}\]
\[\int\frac{x^2}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)}dx = \frac{1}{2}\int\frac{1}{x - 1}dx - 4\int\frac{1}{x - 2}dx + \frac{9}{2}\int\frac{1}{x - 3}dx\]
\[ = \frac{1}{2}\ln \left| x - 1 \right| - 4 \ln \left| x - 2 \right| + \frac{9}{2} \ln\left| x - 3 \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.30 [Page 176]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.30 | Q 6 | Page 176

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{\cos x}{1 + \cos x} dx\]

Write the primitive or anti-derivative of
\[f\left( x \right) = \sqrt{x} + \frac{1}{\sqrt{x}} .\]

 


\[\int\frac{1 + \cos x}{1 - \cos x} dx\]

\[\int\frac{1 + \cos 4x}{\cot x - \tan x} dx\]

\[\int\frac{x^3}{x - 2} dx\]

` ∫ {"cosec"   x }/ { log  tan   x/2 ` dx 

\[\int\frac{x^2}{\sqrt{x - 1}} dx\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

Evaluate the following integrals:
\[\int\frac{x^2}{\left( a^2 - x^2 \right)^{3/2}}dx\]

\[\int\frac{1}{a^2 x^2 + b^2} dx\]

\[\int\frac{1}{\sqrt{1 + 4 x^2}} dx\]

 


\[\int\frac{x}{x^4 - x^2 + 1} dx\]

\[\int\frac{1}{\sqrt{16 - 6x - x^2}} dx\]

\[\int\frac{1}{\sqrt{7 - 6x - x^2}} dx\]

\[\int\frac{x}{\sqrt{x^4 + a^4}} dx\]

\[\int\frac{\sin 8x}{\sqrt{9 + \sin^4 4x}} dx\]

\[\int\frac{\sin 2x}{\sqrt{\cos^4 x - \sin^2 x + 2}} dx\]

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]

\[\int\frac{2x + 3}{\sqrt{x^2 + 4x + 5}} \text{ dx }\]

\[\int\frac{5 \cos x + 6}{2 \cos x + \sin x + 3} \text{ dx }\]

\[\int\cos\sqrt{x}\ dx\]

\[\int \sin^{- 1} \sqrt{x} \text{ dx }\]

\[\int \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \text{ dx }\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{ dx }\]

\[\int e^x \left( \frac{1 + \sin x}{1 + \cos x} \right) dx\]

\[\int e^x \sec x \left( 1 + \tan x \right) dx\]

\[\int\left( x - 2 \right) \sqrt{2 x^2 - 6x + 5} \text{  dx }\]

\[\int\frac{\sin 2x}{\left( 1 + \sin x \right) \left( 2 + \sin x \right)} dx\]

\[\int\frac{1}{x^4 - 1} dx\]

\[\int\frac{x^2 + 1}{x^4 + x^2 + 1} \text{  dx }\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{2x + 3}} \text{ dx }\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} dx\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} \text{ dx}\]

If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\]  then k is equal to


\[\int\frac{\sin^2 x}{\cos^6 x} \text{ dx }\]

\[\int x\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx}\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×