Advertisements
Advertisements
Question
Solution
\[\text{We have}, \]
\[I = \int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} dx\]
\[\text{ Putting x }= \cos \theta\]
\[ \Rightarrow dx = - \sin \text{ θ dθ}\]
\[ \therefore I = \int \tan^{- 1} \sqrt{\frac{1 - \cos \theta}{1 + \cos \theta}} \left( - \sin \text{ θ dθ} \right)\]
\[ = \int \tan^{- 1} \sqrt{\frac{2 \sin^2 \frac{\theta}{2}}{2 \cos^2 \frac{\theta}{2}}} \left( - \sin \theta \right)d\theta\]
\[ = \int \tan^{- 1} \left( \tan \frac{\theta}{2} \right) \left( - \sin \theta \right)d\theta\]
\[ = - \frac{1}{2}\int\theta \sin \theta d\theta\]
\[\text{Considering} \text{ θ as first function and} \sin \text{ θ as second function}\]
\[I = - \frac{1}{2}\left[ \theta\left( - \cos \theta \right) - \int1\left( - \cos \theta \right)d\theta \right]\]
\[ = - \frac{1}{2}\left( \theta\left( - \cos \theta \right) + \int\cos \theta d\theta \right)\]
\[ = - \frac{1}{2}\left( - \theta \cos \theta + \sin \theta \right) + C\]
\[ = - \frac{1}{2}\left[ - \theta \cos \theta + \sqrt{1 - \cos^2 \theta} \right] + C\]
\[ = - \frac{1}{2}\left[ - \cos^{- 1} x \times x + \sqrt{1 - x^2} \right] + C\]
\[ = \frac{1}{2}\left[ x \cos^{- 1} x - \sqrt{1 - x^2} \right] + C\]
APPEARS IN
RELATED QUESTIONS
` ∫ 1/ {1+ cos 3x} ` dx
` ∫ {sin 2x} /{a cos^2 x + b sin^2 x } ` dx
` ∫ tan^5 x dx `
Find : \[\int\frac{dx}{\sqrt{3 - 2x - x^2}}\] .