English

∫ Sec − 1 √ X D X - Mathematics

Advertisements
Advertisements

Question

\[\int \sec^{- 1} \sqrt{x}\ dx\]
Sum

Solution

\[\text{We have}, \]

\[I = \int \sec^{- 1} \sqrt{x} \text{ dx}\]

\[\text{ Putting } \sqrt{x} = \sec \theta\]

\[ \Rightarrow x = \sec^2 \theta\]

\[ \Rightarrow dx = 2 \text{ sec }\text{ θ } \text{ sec} \text{ θ  } \text{ tan   θ } \text{ dθ }\]

\[ = 2 \sec^2 \theta \text{ tan   θ } \text{ dθ }\]

\[ \therefore I = 2\int\theta \sec^2 \theta \text{ tan   θ } \text{ dθ }\]

\[ = 2 \int \theta\tan \theta \sec^2 \text{    θ } \text{ dθ }\]

\[\text{Considering}\text{  θ  as first fucction and} \tan \theta \sec^2 \ \text{theta as second function}\]

\[I = 2\left[ \theta\frac{\tan^2 \theta}{2} - \int1\frac{\tan^2 \theta}{2}d\theta \right]................ \left( \because \int\tan \theta \sec^2 \text{ tan   θ } \text{ dθ } = \frac{\tan^2 \theta}{2} \right)\]

\[ = \theta \tan^2 \theta - \int\left( \sec^2 \theta - 1 \right)d\theta\]

\[ = \theta \tan^2 \theta - \tan \theta + \theta + C\]

\[ = \theta\left( 1 + \tan^2 \theta \right) - \tan \theta + C\]

\[ = \theta \sec^2 \theta - \sqrt{se c^2 \theta - 1} + C\]

\[ = \sec^{- 1} \sqrt{x} x - \sqrt{x - 1} + C\]

\[ = x \sec^{- 1} \sqrt{x} - \sqrt{x - 1} + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Revision Excercise [Page 204]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Revision Excercise | Q 111 | Page 204

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{\left( 1 + x \right)^3}{\sqrt{x}} dx\] 

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

If f' (x) = x − \[\frac{1}{x^2}\]  and  f (1)  \[\frac{1}{2},    find  f(x)\]

 


\[\int\frac{1}{\left( 7x - 5 \right)^3} + \frac{1}{\sqrt{5x - 4}} dx\]

\[\int\frac{1 + \cos 4x}{\cot x - \tan x} dx\]

\[\int\frac{x^2 + 3x - 1}{\left( x + 1 \right)^2} dx\]

\[\int\frac{x + 1}{\sqrt{2x + 3}} dx\]

\[\int\frac{\left( x + 1 \right) e^x}{\sin^2 \left( \text{x e}^x \right)} dx\]

\[\int\frac{1}{a^2 x^2 + b^2} dx\]

\[\int\frac{1}{\sqrt{7 - 6x - x^2}} dx\]

\[\int\frac{\cos x - \sin x}{\sqrt{8 - \sin2x}}dx\]

\[\int\frac{x^3 + x^2 + 2x + 1}{x^2 - x + 1}\text{ dx }\]

\[\int\frac{x^2}{x^2 + 6x + 12} \text{ dx }\]

\[\int\frac{1}{\cos 2x + 3 \sin^2 x} dx\]

\[\int\frac{1}{p + q \tan x} \text{ dx  }\]

\[\int\frac{8 \cot x + 1}{3 \cot x + 2} \text{  dx }\]

\[\int x \text{ sin 2x dx }\]

\[\int \log_{10} x\ dx\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} dx\]

\[\int e^x \left[ \sec x + \log \left( \sec x + \tan x \right) \right] dx\]

\[\int\frac{e^x}{x}\left\{ \text{ x }\left( \log x \right)^2 + 2 \log x \right\} dx\]

\[\int\left( \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right) dx\]

\[\int\sqrt{3 - 2x - 2 x^2} \text{ dx}\]

\[\int(2x + 5)\sqrt{10 - 4x - 3 x^2}dx\]

\[\int\frac{x^3}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{1}{x\left[ 6 \left( \log x \right)^2 + 7 \log x + 2 \right]} dx\]

\[\int\frac{x^2 + 1}{\left( x - 2 \right)^2 \left( x + 3 \right)} dx\]

\[\int\frac{x}{\left( x - 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{x^3 - 1}{x^3 + x} dx\]

\[\int\frac{1}{x \left( x^4 + 1 \right)} dx\]

\[\int\frac{x^2 + 9}{x^4 + 81} \text{ dx }\]

 


\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 9}} \text{ dx}\]

\[\int\frac{x^9}{\left( 4 x^2 + 1 \right)^6}dx\]  is equal to 

\[\int \sin^4 2x\ dx\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int\sqrt{a^2 - x^2}\text{  dx }\]

\[\int \cos^{- 1} \left( 1 - 2 x^2 \right) \text{ dx }\]

\[\int e^{2x} \left( \frac{1 + \sin 2x}{1 + \cos 2x} \right) dx\]

Find: `int (sin2x)/sqrt(9 - cos^4x) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×