Advertisements
Advertisements
Question
Solution
\[\text{We have}, \]
\[I = \int \sec^{- 1} \sqrt{x} \text{ dx}\]
\[\text{ Putting } \sqrt{x} = \sec \theta\]
\[ \Rightarrow x = \sec^2 \theta\]
\[ \Rightarrow dx = 2 \text{ sec }\text{ θ } \text{ sec} \text{ θ } \text{ tan θ } \text{ dθ }\]
\[ = 2 \sec^2 \theta \text{ tan θ } \text{ dθ }\]
\[ \therefore I = 2\int\theta \sec^2 \theta \text{ tan θ } \text{ dθ }\]
\[ = 2 \int \theta\tan \theta \sec^2 \text{ θ } \text{ dθ }\]
\[\text{Considering}\text{ θ as first fucction and} \tan \theta \sec^2 \ \text{theta as second function}\]
\[I = 2\left[ \theta\frac{\tan^2 \theta}{2} - \int1\frac{\tan^2 \theta}{2}d\theta \right]................ \left( \because \int\tan \theta \sec^2 \text{ tan θ } \text{ dθ } = \frac{\tan^2 \theta}{2} \right)\]
\[ = \theta \tan^2 \theta - \int\left( \sec^2 \theta - 1 \right)d\theta\]
\[ = \theta \tan^2 \theta - \tan \theta + \theta + C\]
\[ = \theta\left( 1 + \tan^2 \theta \right) - \tan \theta + C\]
\[ = \theta \sec^2 \theta - \sqrt{se c^2 \theta - 1} + C\]
\[ = \sec^{- 1} \sqrt{x} x - \sqrt{x - 1} + C\]
\[ = x \sec^{- 1} \sqrt{x} - \sqrt{x - 1} + C\]
APPEARS IN
RELATED QUESTIONS
If f' (x) = x − \[\frac{1}{x^2}\] and f (1) \[\frac{1}{2}, find f(x)\]
Find: `int (sin2x)/sqrt(9 - cos^4x) dx`