English

∫ X 2 √ 3 X + 4 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{x^2}{\sqrt{3x + 4}} dx\]
Sum

Solution

\[\int\frac{x^2 dx}{\sqrt{3x + 4}}\]
\[\text{Let 3x + 4 }= t \]
\[ \Rightarrow x = \frac{t - 4}{3}\]
\[ \Rightarrow 1 = \frac{1}{3} . \frac{dt}{dx}\]
\[ \Rightarrow dx = \frac{dt}{3}\]
\[Now, \int\frac{x^2 dx}{\sqrt{3x + 4}}\]
\[ = \frac{1}{3}\int\frac{\left( \frac{t - 4}{3} \right)^2}{\sqrt{t}}dt\]
\[ = \frac{1}{27}\int\left( \frac{t^2}{\sqrt{t}} - \frac{8t}{\sqrt{t}} + \frac{16}{\sqrt{t}} \right)dt\]


\[ = \frac{1}{27}\int\left( t^\frac{3}{2} - 8 t^\frac{1}{2} + 16 t^{- \frac{1}{2}} \right)dt\]
\[ = \frac{1}{27} \left[ \frac{t^\frac{3}{2} + 1}{\frac{3}{2} + 1} + \frac{8 t^\frac{1}{2} + 1}{\frac{1}{2} + 1} + \frac{16 t^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1} \right] + C\]
\[ = \frac{1}{27} \left[ \frac{2}{5} t^\frac{5}{2} - \frac{8 \times 2}{3} t^\frac{3}{2} + 32 t^\frac{1}{2} \right] + C\]
\[ = \frac{2}{135} \left( t \right)^\frac{5}{2} - \frac{16}{81} t^\frac{3}{2} + \frac{32}{27} t^\frac{1}{2} + C\]
\[ = \frac{2}{135} \left( 3x + 4 \right)^\frac{5}{2} - \frac{16}{81} \left( 3x + 4 \right)^\frac{3}{2} + \frac{32}{27} \left( 3x + 4 \right)^\frac{1}{2} + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.10 [Page 65]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.10 | Q 3 | Page 65

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left\{ x^2 + e^{\log  x}+ \left( \frac{e}{2} \right)^x \right\} dx\]


\[\int\frac{1 - \cos 2x}{1 + \cos 2x} dx\]

\[\int \tan^{- 1} \left( \frac{\sin 2x}{1 + \cos 2x} \right) dx\]

\[\int\sqrt{\frac{1 + \cos 2x}{1 - \cos 2x}} dx\]

\[\int\frac{\log\left( 1 + \frac{1}{x} \right)}{x \left( 1 + x \right)} dx\]

\[\int\sqrt{1 + e^x} .  e^x dx\]

\[\int x^3 \sin x^4 dx\]

\[\int \sin^5 x \text{ dx }\]

\[\int \sin^7 x  \text{ dx }\]

Evaluate the following integrals:

\[\int\cos\left\{ 2 \cot^{- 1} \sqrt{\frac{1 + x}{1 - x}} \right\}dx\]

\[\int\frac{x}{x^4 - x^2 + 1} dx\]

\[\int\frac{1}{\sqrt{8 + 3x - x^2}} dx\]

\[\int\frac{2x + 5}{x^2 - x - 2} \text{ dx }\]

\[\int\frac{a x^3 + bx}{x^4 + c^2} dx\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 2x - 1}}\text{  dx }\]

\[\int\frac{x - 1}{\sqrt{x^2 + 1}} \text{ dx }\]

\[\int\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\frac{1}{1 + 3 \sin^2 x} \text{ dx }\]

\[\int\frac{1}{\sqrt{3} \sin x + \cos x} dx\]

\[\int\frac{1}{5 + 7 \cos x + \sin x} dx\]

\[\int\frac{1}{1 - \cot x} dx\]

\[\int x^3 \text{ log x dx }\]

\[\int\frac{\log \left( \log x \right)}{x} dx\]

\[\int\left( x + 1 \right) \text{ e}^x \text{ log } \left( x e^x \right) dx\]

\[\int\left( x + 1 \right) \text{ log  x  dx }\]

\[\int x \cos^3 x\ dx\]

\[\int\left\{ \tan \left( \log x \right) + \sec^2 \left( \log x \right) \right\} dx\]

\[\int\frac{5 x^2 - 1}{x \left( x - 1 \right) \left( x + 1 \right)} dx\]

If \[\int\frac{\cos 8x + 1}{\tan 2x - \cot 2x} dx\]


\[\int e^x \left\{ f\left( x \right) + f'\left( x \right) \right\} dx =\]
 

\[\int\frac{\cos 2x - 1}{\cos 2x + 1} dx =\]

If \[\int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx = a\log\left| 1 + x^2 \right| + b \tan^{- 1} x + \frac{1}{5}\log\left| x + 2 \right| + C,\] then


\[\int\frac{\left( 2^x + 3^x \right)^2}{6^x} \text{ dx }\] 

\[\int\frac{1}{\text{ sin} \left( x - a \right) \text{ sin } \left( x - b \right)} \text{ dx }\]

\[\int\frac{1}{x^2 + 4x - 5} \text{ dx }\]

\[\int\frac{\sin^6 x}{\cos x} \text{ dx }\]

\[\int\frac{1 + x^2}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} \text{ dx}\]

\[\int\frac{5 x^4 + 12 x^3 + 7 x^2}{x^2 + x} dx\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×