English

∫ 1 1 + 3 Sin 2 X D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{1}{1 + 3 \sin^2 x} \text{ dx }\]
Sum

Solution

\[\text{ Let I }= \int \frac{1}{1 + 3 \sin^2 x}\text{ dx }\]
\[\text{Dividing numerator and denominator by} \cos^2 x\]
\[ \Rightarrow I = \int \frac{\sec^2 x}{\sec^2 x + 3 \tan^2 x}dx\]


\[ = \int \frac{\sec^2 x}{1 + \tan^2 x + 3 \tan^2 x}dx\]
\[ = \int \frac{\sec^2 x}{1 + 4 \tan^2 x}dx\]
\[ = \int \frac{\sec^2 x}{1 + \left( 2 \tan x \right)^2}dx\]
\[\text{ Let 2 }\tan x = t\]
\[ \Rightarrow 2 \sec^2 x \text{ dx } = dt\]
\[ \Rightarrow \sec^2 x \text{ dx } = \frac{dt}{2}\]
\[ \therefore I = \frac{1}{2}\int \frac{dt}{1 + t^2}\]
\[ = \frac{1}{2} \text{ tan  }^{- 1} \left( t \right) + C\]
\[ = \frac{1}{2} \text{ tan }^{- 1} \left( 2 \tan x \right) + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.22 [Page 114]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.22 | Q 5 | Page 114

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int \left( \sqrt{x} - \frac{1}{\sqrt{x}} \right)^2 dx\]

\[\int \left( 3x + 4 \right)^2 dx\]

\[\int\frac{x + 1}{\sqrt{2x + 3}} dx\]

`∫     cos ^4  2x   dx `


\[\int\frac{1}{x (3 + \log x)} dx\]

\[\int\frac{e^x + 1}{e^x + x} dx\]

` ∫  {sin 2x} /{a cos^2  x  + b sin^2  x }  ` dx 


` ∫ {"cosec"   x }/ { log  tan   x/2 ` dx 

\[\int\frac{\cos x - \sin x}{1 + \sin 2x} dx\]

\[\int\frac{x \sin^{- 1} x^2}{\sqrt{1 - x^4}} dx\]

\[\int\frac{\left( x + 1 \right) e^x}{\cos^2 \left( x e^x \right)} dx\]

\[\int\frac{\sin \left( \tan^{- 1} x \right)}{1 + x^2} dx\]

\[\int \sin^3 x \cos^5 x \text{ dx  }\]

\[\int\frac{1}{\sqrt{a^2 - b^2 x^2}} dx\]

\[\int\frac{e^x}{1 + e^{2x}} dx\]

\[\int\frac{1}{\sqrt{7 - 3x - 2 x^2}} dx\]

\[\int\frac{1}{\sqrt{7 - 6x - x^2}} dx\]

\[\int\frac{\sin 8x}{\sqrt{9 + \sin^4 4x}} dx\]

\[\int\frac{1}{4 \sin^2 x + 5 \cos^2 x} \text{ dx }\]

\[\int\frac{x + \sin x}{1 + \cos x} \text{ dx }\]

 
` ∫  x tan ^2 x dx 

\[\int \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \text{ dx }\]

\[\int \cos^3 \sqrt{x}\ dx\]

\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

\[\int e^x \left( \log x + \frac{1}{x} \right) dx\]

\[\int\frac{e^x}{x}\left\{ \text{ x }\left( \log x \right)^2 + 2 \log x \right\} dx\]

\[\int e^x \left( \frac{\sin x \cos x - 1}{\sin^2 x} \right) dx\]

\[\int\left( 4x + 1 \right) \sqrt{x^2 - x - 2} \text{  dx }\]

\[\int\frac{1}{x\left[ 6 \left( \log x \right)^2 + 7 \log x + 2 \right]} dx\]

\[\int\frac{dx}{\left( x^2 + 1 \right) \left( x^2 + 4 \right)}\]

\[\int\frac{1}{7 + 5 \cos x} dx =\]

\[\int \tan^3 x\ dx\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\sqrt{3 x^2 + 4x + 1}\text{  dx }\]

\[ \int\left( 1 + x^2 \right) \ \cos 2x \ dx\]


\[\int\frac{\log \left( 1 - x \right)}{x^2} \text{ dx}\]

\[\int\frac{1 + x^2}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int \sin^3  \left( 2x + 1 \right)  \text{dx}\]


\[\int\frac{\cos^7 x}{\sin x} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×