English

∫ D X ( X 2 + 1 ) ( X 2 + 4 ) - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{dx}{\left( x^2 + 1 \right) \left( x^2 + 4 \right)}\]
Sum

Solution

We have,

\[I = \int\frac{dx}{\left( x^2 + 1 \right) \left( x^2 + 4 \right)}\]

Putting `x^2 = t`

\[\text{Then, }\frac{1}{\left( x^2 + 1 \right) \left( x^2 + 4 \right)} = \frac{1}{\left( t + 1 \right) \left( t + 4 \right)}\]

\[\text{Let }\frac{1}{\left( t + 1 \right) \left( t + 4 \right)} = \frac{A}{t + 1} + \frac{B}{t + 4}\]

\[ \Rightarrow 1 = A \left( t + 4 \right) + B \left( t + 1 \right)\]

Putting `t + 4 = 0`

\[ \Rightarrow t = - 4\]

\[ \therefore 1 = A \times 0 + B \left( - 3 \right)\]

\[ \Rightarrow B = - \frac{1}{3}\]

Putting `t + 1 = 0`

\[ \Rightarrow t = - 1\]

\[ \therefore 1 = A \left( - 1 + 4 \right) + B \times 0\]

\[ \Rightarrow A = \frac{1}{3}\]

\[ \therefore \frac{1}{\left( t + 1 \right) \left( t + 4 \right)} = \frac{1}{3 \left( t + 1 \right)} - \frac{1}{3 \left( t + 4 \right)}\]

\[ \Rightarrow \frac{1}{\left( x^2 + 1 \right) \left( x^2 + 4 \right)} = \frac{1}{3 \left( x^2 + 1 \right)} - \frac{1}{3 \left( x^2 + 2^2 \right)}\]

\[ \Rightarrow \int\frac{dx}{\left( x^2 + 1 \right) \left( x^2 + 4 \right)} = \frac{1}{3}\int\frac{dx}{x^2 + 1^2} - \frac{1}{3}\int\frac{dx}{x^2 + 2^2}\]

\[ = \frac{1}{3} \tan^{- 1} x - \frac{1}{3} \times \frac{1}{2} \tan^{- 1} \left( \frac{x}{2} \right) + C\]

\[ = \frac{1}{3} \tan^{- 1} x - \frac{1}{6} \tan^{- 1} \left( \frac{x}{2} \right) + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.30 [Page 177]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.30 | Q 41 | Page 177

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{\sin^2 x}{1 + \cos x}   \text{dx} \]

\[\int\frac{1 - \cos 2x}{1 + \cos 2x} dx\]

\[\int\frac{\left( x^3 + 8 \right)\left( x - 1 \right)}{x^2 - 2x + 4} dx\]

If f' (x) = x + bf(1) = 5, f(2) = 13, find f(x)


\[\int\frac{\text{sin} \left( x - \alpha \right)}{\text{sin }\left( x + \alpha \right)} dx\]

\[\int\left( \frac{x + 1}{x} \right) \left( x + \log x \right)^2 dx\]

\[\int\frac{1}{\sqrt{x} + x} \text{ dx }\]

 ` ∫   1 /{x^{1/3} ( x^{1/3} -1)}   ` dx


\[\int\frac{1}{\sqrt{a^2 + b^2 x^2}} dx\]

\[\int\frac{e^x}{1 + e^{2x}} dx\]

\[\int\frac{\cos x}{\sin^2 x + 4 \sin x + 5} dx\]

\[\int\frac{1}{\sqrt{3 x^2 + 5x + 7}} dx\]

\[\int\frac{x}{\sqrt{4 - x^4}} dx\]

\[\int\frac{a x^3 + bx}{x^4 + c^2} dx\]

\[\int\frac{x + 7}{3 x^2 + 25x + 28}\text{ dx}\]

\[\int\frac{x^3}{x^4 + x^2 + 1}dx\]

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

\[\int\frac{x}{\sqrt{8 + x - x^2}} dx\]


\[\int\frac{x - 1}{\sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{1}{5 + 4 \cos x} dx\]

\[\int\frac{1}{1 - \sin x + \cos x} \text{ dx }\]

\[\int\frac{1}{13 + 3 \cos x + 4 \sin x} dx\]

\[\int\frac{1}{p + q \tan x} \text{ dx  }\]

\[\int\frac{4 \sin x + 5 \cos x}{5 \sin x + 4 \cos x} \text{ dx }\]

\[\int x\sqrt{x^4 + 1} \text{ dx}\]

\[\int x^2 \sqrt{a^6 - x^6} \text{ dx}\]

\[\int\frac{\sqrt{16 + \left( \log x \right)^2}}{x} \text{ dx}\]

\[\int\sqrt{2x - x^2} \text{ dx}\]

\[\int\left( 4x + 1 \right) \sqrt{x^2 - x - 2} \text{  dx }\]

\[\int\left( x - 2 \right) \sqrt{2 x^2 - 6x + 5} \text{  dx }\]

\[\int\frac{5 x^2 - 1}{x \left( x - 1 \right) \left( x + 1 \right)} dx\]

\[\int\frac{1}{x\left[ 6 \left( \log x \right)^2 + 7 \log x + 2 \right]} dx\]

\[\int\frac{1}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)} dx\]

\[\int\frac{\left( x^2 + 1 \right) \left( x^2 + 2 \right)}{\left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

 


\[\int\frac{x^2 - 3x + 1}{x^4 + x^2 + 1} \text{ dx }\]

\[\int\frac{1}{\left( x^2 + 1 \right) \sqrt{x}} \text{ dx }\]

\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]


\[\int x\sqrt{1 + x - x^2}\text{  dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×