English

∫ X √ 1 + X − X 2 Dx - Mathematics

Advertisements
Advertisements

Question

\[\int x\sqrt{1 + x - x^2}\text{  dx }\]
Sum

Solution

\[\text{ Let I }= \int x\sqrt{1 + x - x^2}\text{ dx}\]
\[\text{ and  let x }= A\frac{d}{dx}\left( 1 + x - x^2 \right) + B\]
\[ \Rightarrow x = A \left( - 2x + 1 \right) + B\]
\[\text{By equating the coefficients of like terms we get}, \]
\[x = \left( - 2A \right) x\]
\[ \Rightarrow A = - \frac{1}{2}\]
\[\text{  and   A + B = 0 }\]
\[ \Rightarrow B = \frac{1}{2}\]
\[\text{By substituting the values of A and B in eq (1) we get}, \]
\[I = \int\left[ - \frac{1}{2} \left( - 2x + 1 \right) + \frac{1}{2} \right] \sqrt{1 + x - x^2} \text{ dx }\]
\[ = - \frac{1}{2}\int\left( - 2x + 1 \right) \sqrt{1 + x - x^2}dx + \frac{1}{2} \sqrt{1 + x - x^2}\text{ dx }\]
\[\text{ Putting  1 + x - x^2 = t}\]
\[ \Rightarrow \left( - 2x + 1 \right) \text{ dx }= dt\]
\[ \therefore I = - \frac{1}{2}\int\sqrt{t} \cdot dt + \frac{1}{2}\int\sqrt{1 + x - x^2} \text{ dx }\]
\[ = - \frac{1}{2}\int\sqrt{t} \text{ dt} + \frac{1}{2}\int\sqrt{1 - \left( x^2 - x \right)} \text{ dx }\]
\[ = - \frac{1}{2}\int t^\frac{1}{2} \cdot dt + \frac{1}{2}\int\sqrt{1 - \left( x^2 - x + \frac{1}{4} - \frac{1}{4} \right)}\text{ dx }\]
\[ = - \frac{1}{2}\left[ \frac{t^\frac{1}{2} + 1}{\frac{1}{2} + 1} \right] + \frac{1}{2}\int\sqrt{1 - \left( x - \frac{1}{2} \right)^2 + \frac{1}{4}}\text{ dx }\]
\[ = - \frac{1}{2} \times \frac{2}{3} t^\frac{3}{2} + \frac{1}{2}\int\sqrt{\left( \frac{\sqrt{5}}{2} \right)^2 - \left( x - \frac{1}{2} \right)^2}dx\]
\[ = - \frac{1}{3} t^\frac{3}{2} + \frac{1}{2}\left[ \left( \frac{x - \frac{1}{2}}{2} \right) \sqrt{\left( \frac{\sqrt{5}}{2} \right)^2 - \left( x - \frac{1}{2} \right)^2} + \frac{\left( \frac{\sqrt{5}}{2} \right)^2}{2} \text{ sin}^{- 1} \left( \frac{x - \frac{1}{2}}{\frac{\sqrt{5}}{2}} \right) \right] + C ......................\left[ \because \int\sqrt{a^2 - x^2}dx = \frac{x}{2}\sqrt{a^2 - x^2} + \frac{1}{2} a^2 \sin^{- 1} \frac{x}{a} + C \right]\]
\[ = - \frac{1}{3} \left( 1 + x - x^2 \right)^\frac{3}{2} + \frac{1}{2}\left[ \left( \frac{2x - 1}{4} \right) \sqrt{1 + x - x^2} + \frac{5}{8} \text{ sin}^{- 1} \left( \frac{2x - 1}{\sqrt{5}} \right) \right] + C\]
\[ = \frac{- \left( 1 + x - x^2 \right)\sqrt{1 + x - x^2}}{3} + \frac{\left( 2x - 1 \right)}{8} \sqrt{1 + x - x^2} + \frac{5}{16} \text{ sin}^{- 1} \left( \frac{2x - 1}{\sqrt{5}} \right) + C\]
\[ = \sqrt{1 + x - x^2} \left[ \frac{- \left( 1 + x - x^2 \right)}{3} + \frac{2x - 1}{8} \right] + \frac{5}{16} \text{ sin}^{- 1} \left( \frac{2x - 1}{\sqrt{5}} \right) + C\]
\[ = \sqrt{1 + x - x^2} \left[ \frac{- 8 - 8x + 8 x^2 + 6x - 3}{24} \right] + \frac{5}{16}\text{ sin}^{- 1} \left( \frac{2x - 1}{\sqrt{5}} \right) + C\]
\[ = \sqrt{1 + x - x^2} \left[ \frac{8 x^2 - 2x - 11}{24} \right] + \frac{5}{16} \text{ sin}^{- 1} \left( \frac{2x - 1}{\sqrt{5}} \right) + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Revision Excercise [Page 204]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Revision Excercise | Q 89 | Page 204

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left( \frac{m}{x} + \frac{x}{m} + m^x + x^m + mx \right) dx\]

\[\int\frac{\left( 1 + x \right)^3}{\sqrt{x}} dx\] 

\[\int\frac{x^5 + x^{- 2} + 2}{x^2} dx\]

\[\int\frac{1 - \cos 2x}{1 + \cos 2x} dx\]

\[\int \left( a \tan x + b \cot x \right)^2 dx\]

\[\int\frac{1 + \cos 4x}{\cot x - \tan x} dx\]

\[\int\frac{2x + 1}{\sqrt{3x + 2}} dx\]

\[\  ∫    x   \text{ e}^{x^2} dx\]

\[\int\frac{1}{\sqrt{x} + x} \text{ dx }\]

\[\int \sec^4 2x \text{ dx }\]

\[\int\frac{1}{\sqrt{1 + 4 x^2}} dx\]

 


\[\int\frac{1}{1 + x - x^2}  \text{ dx }\]

\[\int\frac{1}{\sqrt{5 - 4x - 2 x^2}} dx\]

\[\int\frac{2x - 3}{x^2 + 6x + 13} dx\]

\[\int\frac{\left( 1 - x^2 \right)}{x \left( 1 - 2x \right)} \text
{dx\]

\[\int\frac{\left( x - 1 \right)^2}{x^2 + 2x + 2} dx\]

\[\int\frac{x}{\sqrt{x^2 + 6x + 10}} \text{ dx }\]

\[\int\frac{8 \cot x + 1}{3 \cot x + 2} \text{  dx }\]

\[\int x\ {cosec}^2 \text{ x }\ \text{ dx }\]


\[\int2 x^3 e^{x^2} dx\]

\[\int {cosec}^3 x\ dx\]

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx }\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} dx\]

\[\int e^x \left( \log x + \frac{1}{x} \right) dx\]

\[\int e^x \cdot \frac{\sqrt{1 - x^2} \sin^{- 1} x + 1}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{\sqrt{16 + \left( \log x \right)^2}}{x} \text{ dx}\]

\[\int\frac{2x + 1}{\left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{1}{\cos x + \sqrt{3} \sin x} \text{ dx } \] is equal to

\[\int\frac{\sin x}{3 + 4 \cos^2 x} dx\]

\[\int\frac{2}{\left( e^x + e^{- x} \right)^2} dx\]

\[\int\frac{x^3}{x + 1}dx\] is equal to

\[\int \text{cosec}^2 x \text{ cos}^2 \text{  2x  dx} \]

\[\int\frac{1}{e^x + e^{- x}} dx\]

\[\int\frac{1}{3 x^2 + 13x - 10} \text{ dx }\]

\[\int\frac{1}{\sec x + cosec x}\text{  dx }\]

\[\int\sqrt{a^2 + x^2} \text{ dx }\]

\[\int\frac{1 + x^2}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×