मराठी

∫ D X ( X 2 + 1 ) ( X 2 + 4 ) - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{dx}{\left( x^2 + 1 \right) \left( x^2 + 4 \right)}\]
बेरीज

उत्तर

We have,

\[I = \int\frac{dx}{\left( x^2 + 1 \right) \left( x^2 + 4 \right)}\]

Putting `x^2 = t`

\[\text{Then, }\frac{1}{\left( x^2 + 1 \right) \left( x^2 + 4 \right)} = \frac{1}{\left( t + 1 \right) \left( t + 4 \right)}\]

\[\text{Let }\frac{1}{\left( t + 1 \right) \left( t + 4 \right)} = \frac{A}{t + 1} + \frac{B}{t + 4}\]

\[ \Rightarrow 1 = A \left( t + 4 \right) + B \left( t + 1 \right)\]

Putting `t + 4 = 0`

\[ \Rightarrow t = - 4\]

\[ \therefore 1 = A \times 0 + B \left( - 3 \right)\]

\[ \Rightarrow B = - \frac{1}{3}\]

Putting `t + 1 = 0`

\[ \Rightarrow t = - 1\]

\[ \therefore 1 = A \left( - 1 + 4 \right) + B \times 0\]

\[ \Rightarrow A = \frac{1}{3}\]

\[ \therefore \frac{1}{\left( t + 1 \right) \left( t + 4 \right)} = \frac{1}{3 \left( t + 1 \right)} - \frac{1}{3 \left( t + 4 \right)}\]

\[ \Rightarrow \frac{1}{\left( x^2 + 1 \right) \left( x^2 + 4 \right)} = \frac{1}{3 \left( x^2 + 1 \right)} - \frac{1}{3 \left( x^2 + 2^2 \right)}\]

\[ \Rightarrow \int\frac{dx}{\left( x^2 + 1 \right) \left( x^2 + 4 \right)} = \frac{1}{3}\int\frac{dx}{x^2 + 1^2} - \frac{1}{3}\int\frac{dx}{x^2 + 2^2}\]

\[ = \frac{1}{3} \tan^{- 1} x - \frac{1}{3} \times \frac{1}{2} \tan^{- 1} \left( \frac{x}{2} \right) + C\]

\[ = \frac{1}{3} \tan^{- 1} x - \frac{1}{6} \tan^{- 1} \left( \frac{x}{2} \right) + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.30 [पृष्ठ १७७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.30 | Q 41 | पृष्ठ १७७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{1 - \cos 2x}{1 + \cos 2x} dx\]

\[\int \left( a \tan x + b \cot x \right)^2 dx\]

\[\int \left( 2x - 3 \right)^5 + \sqrt{3x + 2}  \text{dx} \]

`  ∫  sin 4x cos  7x  dx  `

\[\int\text{sin mx }\text{cos nx dx m }\neq n\]

\[\int\frac{\text{sin} \left( x - a \right)}{\text{sin}\left( x - b \right)} dx\]

` ∫  {sec  x   "cosec " x}/{log  ( tan x) }`  dx


` ∫  {sin 2x} /{a cos^2  x  + b sin^2  x }  ` dx 


\[\int\frac{\log\left( 1 + \frac{1}{x} \right)}{x \left( 1 + x \right)} dx\]

\[\int\left( 4x + 2 \right)\sqrt{x^2 + x + 1}  \text{dx}\]

\[\int\frac{e^{3x}}{4 e^{6x} - 9} dx\]

\[\int\frac{1}{\sqrt{8 + 3x - x^2}} dx\]

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]

\[\int\frac{\cos x}{\cos 3x} \text{ dx }\]

\[\int x \cos x\ dx\]

\[\int\frac{x + \sin x}{1 + \cos x} \text{ dx }\]

\[\int \log_{10} x\ dx\]

 
` ∫  x tan ^2 x dx 

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx }\]

\[\int \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) \text{ dx }\]

\[\int\left( \tan^{- 1} x^2 \right) x\ dx\]

∴\[\int e^{2x} \left( - \sin x + 2 \cos x \right) dx\]

\[\int\left( 2x - 5 \right) \sqrt{2 + 3x - x^2} \text{  dx }\]

\[\int\frac{x^2 + 1}{x\left( x^2 - 1 \right)} dx\]

\[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 3 \right)} dx\]

\[\int\frac{x}{\left( x^2 - a^2 \right) \left( x^2 - b^2 \right)} dx\]

\[\int\frac{18}{\left( x + 2 \right) \left( x^2 + 4 \right)} dx\]

\[\int\frac{x}{\left( x + 1 \right) \left( x^2 + 1 \right)} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)}dx\]

\[\int\frac{1}{\cos x \left( 5 - 4 \sin x \right)} dx\]

\[\int\frac{1}{\left( x^2 + 1 \right) \sqrt{x}} \text{ dx }\]

Write a value of

\[\int e^{3 \text{ log x}} x^4\text{ dx}\]

\[\int\frac{1}{1 + \tan x} dx =\]

\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x}\]

\[\int\frac{\sin x + \cos x}{\sqrt{\sin 2x}} \text{ dx}\]

\[\int\frac{\sin^2 x}{\cos^6 x} \text{ dx }\]

\[\int \sec^6 x\ dx\]

\[\int \tan^3 x\ \sec^4 x\ dx\]

\[\int x^2 \tan^{- 1} x\ dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×