मराठी

∫ 1 Cos X ( 5 − 4 Sin X ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{\cos x \left( 5 - 4 \sin x \right)} dx\]
बेरीज

उत्तर

We have,
\[I = \int\frac{dx}{\cos x \left( 5 - 4 \sin x \right)}\]
\[ = \int\frac{\cos x dx}{\cos^2 x \left( 5 - 4 \sin x \right)}\]
\[ = \int\frac{\cos x dx}{\left( 1 - \sin^2 x \right) \left( 5 - 4 \sin x \right)}\]
\[ = \int\frac{\cos x dx}{\left( 1 - \sin x \right) \left( 1 + \sin x \right) \left( 5 - 4 \sin x \right)}\]
\[\text{Putting }\sin x = t\]
\[ \Rightarrow \cos x dx = dt\]
\[ \therefore I = \int\frac{dt}{\left( 1 - t \right) \left( 1 + t \right) \left( 5 - 4t \right)}\]
\[\text{Let }\frac{1}{\left( 1 - t \right) \left( 1 + t \right) \left( 5 - 4t \right)} = \frac{A}{1 - t} + \frac{B}{1 + t} + \frac{C}{5 - 4t}\]
\[ \Rightarrow \frac{1}{\left( 1 - t \right) \left( 1 + t \right) \left( 5 - 4t \right)} = \frac{A\left( 1 + t \right) \left( 5 - 4t \right) + B\left( 1 - t \right) \left( 5 - 4t \right) + C\left( 1 - t \right) \left( 1 + t \right)}{\left( 1 - t \right) \left( 1 + t \right) \left( 5 - 4t \right)}\]
\[ \Rightarrow 1 = A\left( 1 + t \right) \left( 5 - 4t \right) + B\left( 1 - t \right) \left( 5 - 4t \right) + C\left( 1 - t \right) \left( 1 + t \right)\]
\[\text{Putting 1 + t = 0}\]
\[ \Rightarrow t = - 1\]
\[1 = B\left( 2 \right) \left( 5 + 4 \right)\]
\[B = \frac{1}{18}\]
\[\text{Putting 1 - t = 0}\]
\[ \Rightarrow t = 1\]
\[1 = A \left( 2 \right) \left( 5 - 4 \right) + B \times 0 + C \times 0\]
\[A = \frac{1}{2}\]
\[\text{Putting 5 - 4t = 0}\]
\[ \Rightarrow 4t = 5\]
\[ \Rightarrow t = \frac{5}{4}\]
\[1 = C \left( 1 - \frac{5}{4} \right) \left( 1 + \frac{5}{4} \right)\]
\[ \Rightarrow 1 = C \left( - \frac{1}{4} \right) \left( \frac{9}{4} \right)\]
\[ \Rightarrow C = - \frac{16}{9}\]
\[ \therefore I = \frac{1}{2}\int\frac{dt}{1 - t} + \frac{1}{18}\int\frac{dt}{1 + t} - \frac{16}{9}\int\frac{dt}{5 - 4t}\]
\[ = \frac{1}{2} \frac{\log \left| 1 - t \right|}{- 1} + \frac{1}{18} \log \left| 1 + t \right| - \frac{16}{9} \times \frac{\log \left| 5 - 4t \right|}{- 4} + C\]
\[ = \frac{1}{18} \log \left| 1 + t \right| - \frac{1}{2} \log \left| 1 - t \right| + \frac{4}{9}\log \left| 5 - 4t \right| + C\]
\[ = \frac{1}{18} \log \left| 1 + \sin x \right| - \frac{1}{2} \log \left| 1 - \sin x \right| + \frac{4}{9} \log \left| 5 - 4 \sin x \right| + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.30 [पृष्ठ १७७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.30 | Q 59 | पृष्ठ १७७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\sqrt{x}\left( x^3 - \frac{2}{x} \right) dx\]

\[\int\frac{\cos x}{1 + \cos x} dx\]

\[\int\frac{x + 1}{\sqrt{2x + 3}} dx\]

\[\int \sin^2 \frac{x}{2} dx\]

` ∫    cos  mx  cos  nx  dx `

 


\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

Evaluate the following integrals:

\[\int\cos\left\{ 2 \cot^{- 1} \sqrt{\frac{1 + x}{1 - x}} \right\}dx\]

\[\int\frac{1}{x^2 - 10x + 34} dx\]

\[\int\frac{1}{\sqrt{\left( x - \alpha \right)\left( \beta - x \right)}} dx, \left( \beta > \alpha \right)\]

`  ∫ \sqrt{"cosec x"- 1}  dx `

\[\int\frac{x + 2}{2 x^2 + 6x + 5}\text{  dx }\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6}\text{  dx }\]

\[\int\frac{x + 1}{\sqrt{x^2 + 1}} dx\]

\[\int\frac{1}{4 \cos^2 x + 9 \sin^2 x}\text{  dx }\]

\[\int\frac{1}{\sin x + \sqrt{3} \cos x} \text{ dx  }\]

\[\int\frac{3 + 2 \cos x + 4 \sin x}{2 \sin x + \cos x + 3} \text{ dx }\]

\[\int x^2 \text{ cos x dx }\]

\[\int \sec^{- 1} \sqrt{x}\ dx\]

\[\int \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \text{ dx }\]

\[\int e^x \left( \cos x - \sin x \right) dx\]

\[\int x\sqrt{x^4 + 1} \text{ dx}\]

\[\int\frac{3 + 4x - x^2}{\left( x + 2 \right) \left( x - 1 \right)} dx\]

\[\int\frac{1}{\left( x - 1 \right) \left( x + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{5 x^2 - 1}{x \left( x - 1 \right) \left( x + 1 \right)} dx\]

\[\int\frac{1}{x\left[ 6 \left( \log x \right)^2 + 7 \log x + 2 \right]} dx\]

\[\int\frac{3x + 5}{x^3 - x^2 - x + 1} dx\]

\[\int\sqrt{\cot \text{θ} d  } \text{ θ}\]

\[\int\frac{2}{\left( e^x + e^{- x} \right)^2} dx\]

The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]


\[\int e^x \left\{ f\left( x \right) + f'\left( x \right) \right\} dx =\]
 

\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]


\[\int\frac{1}{1 - x - 4 x^2}\text{  dx }\]

\[\int\frac{\cos x}{\frac{1}{4} - \cos^2 x} \text{ dx }\]

\[\int\frac{1}{\sin^4 x + \cos^4 x} \text{ dx}\]


\[\int\sqrt{a^2 + x^2} \text{ dx }\]

\[\int\log \left( x + \sqrt{x^2 + a^2} \right) \text{ dx}\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{  dx}\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} \text{ dx}\]

\[\int \sin^3  \left( 2x + 1 \right)  \text{dx}\]


\[\int\frac{x + 3}{\left( x + 4 \right)^2} e^x dx =\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×