Advertisements
Advertisements
प्रश्न
\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x}\]
बेरीज
उत्तर
\[\text{ Let I } = \int\frac{\sin 2x}{a^2 + b^2 \sin^2 x}dx\]
\[\text{ Putting a }+ b^2 \sin^2 x = t\]
\[ \Rightarrow b^2 \left( 2 \sin x \cos x \right) dx = dt\]
\[ \Rightarrow b^2 \times \text{ sin 2x dx} = dt\]
\[ \therefore I = \frac{1}{b^2}\int\frac{dt}{t}\]
\[ = \frac{1}{b^2}\text{ ln }\left| t \right| + C \]
\[ = \frac{1}{b^2}\text{ ln }\left| a^2 + b^2 \sin^2 x \right| + C ................\left( \because t = a + b^2 \sin^2 x \right)\]
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int\left\{ x^2 + e^{\log x}+ \left( \frac{e}{2} \right)^x \right\} dx\]
\[\int\frac{x}{\sqrt{x + a} - \sqrt{x + b}}dx\]
\[\int\frac{x \sin^{- 1} x^2}{\sqrt{1 - x^4}} dx\]
\[\int\sqrt {e^x- 1} \text{dx}\]
\[\int\frac{1}{\left( x + 1 \right)\left( x^2 + 2x + 2 \right)} dx\]
\[\ \int\ x \left( 1 - x \right)^{23} dx\]
\[\int\frac{1}{\sqrt{7 - 6x - x^2}} dx\]
\[\int\frac{1}{\sqrt{5 x^2 - 2x}} dx\]
\[\int\frac{1}{x\sqrt{4 - 9 \left( \log x \right)^2}} dx\]
\[\int\frac{\sin 8x}{\sqrt{9 + \sin^4 4x}} dx\]
` ∫ \sqrt{"cosec x"- 1} dx `
\[\int\frac{x + 2}{\sqrt{x^2 - 1}} \text{ dx }\]
\[\int\frac{1}{1 + 3 \sin^2 x} \text{ dx }\]
`int 1/(sin x - sqrt3 cos x) dx`
\[\int\frac{8 \cot x + 1}{3 \cot x + 2} \text{ dx }\]
` ∫ x tan ^2 x dx
\[\int\sqrt{2x - x^2} \text{ dx}\]
\[\int\left( 2x + 3 \right) \sqrt{x^2 + 4x + 3} \text{ dx }\]
\[\int\frac{x^2}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]
\[\int\frac{x^2 + 1}{x\left( x^2 - 1 \right)} dx\]
\[\int\frac{5 x^2 - 1}{x \left( x - 1 \right) \left( x + 1 \right)} dx\]
\[\int\frac{1}{x \left( x^4 - 1 \right)} dx\]
\[\int\frac{1}{x^4 + 3 x^2 + 1} \text{ dx }\]
\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} dx\]
Write the anti-derivative of \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]
\[\int\frac{x}{4 + x^4} \text{ dx }\] is equal to
\[\int\frac{2}{\left( e^x + e^{- x} \right)^2} dx\]
\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]
\[\int \text{cosec}^2 x \text{ cos}^2 \text{ 2x dx} \]
\[\int \cot^4 x\ dx\]
\[\int \cos^5 x\ dx\]
\[\int\frac{1}{\sqrt{3 - 2x - x^2}} \text{ dx}\]
\[\int\frac{1}{\sec x + cosec x}\text{ dx }\]
\[\int \left( x + 1 \right)^2 e^x \text{ dx }\]
\[\int\log \left( x + \sqrt{x^2 + a^2} \right) \text{ dx}\]
\[\int\frac{\sin x + \cos x}{\sin^4 x + \cos^4 x} \text{ dx }\]
\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} \text{ dx}\]
\[\int \sin^3 \left( 2x + 1 \right) \text{dx}\]